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In this paper we address the challenge of metacomputing with two distant parallel
computers linked by a slow network and running the numerical approximation of
two sets of coupled PDEs. Several software tools are available for coupling codes,
and large-scale computing on a network of parallel computers seems to be mature
from a computer science point of view. From an algorithmic point of view, the
key to obtaining parallel efficiency is the ability to overlap communication with
computation: a priori, the speed of communication between the processors that run the
two different codes must be of the same order as that between processors that run the
same code in parallel. However, a local network of processors is still faster than a long
distant network used for metacomputing by one or two orders of magnitude at least.
In this paper, to overcome this limitation, we study some new adaptive time-marching
schemes for coupling codes so that efficient metacomputing may be obtained. We
will focus on stability and accuracy issues in order to minimize the communication
processes and define under which conditions our schemes are numerically efficient.
We give several examples of applications chosen as representative test cases for the
numerical validation of our algorithms. Finally, efficient metacomputing with two
distanced computers linked by a slow network is demonstrated for an application in
combustion. c© 2000 Academic Press

Key Words:algorithms for specific classes of architectures; complexity and perfor-
mance of numerical algorithms; parallel computation; extrapolation methods; stabil-
ity and convergence of numerical methods; discrete Fourier transforms; combustion;
convective instability.

1. INTRODUCTION AND MOTIVATION

Today, large-scale computation of combustion problems on parallel computers can be
done efficiently on dedicated large MIMD systems with hundreds of processors, but the

1 This work was backed by R´egion Rhône Alpes.
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cost of these large-scale computers is prohibitive for industry and for an average academic
institution. In particular, in an industry environment, one might be more interested in having
a robust and efficient code that runs on a cluster of servers linked by an ordinary Ethernet
network, than a high-performance code that requires a gigabit internal network. A typical
affordable cluster of machines has a slow network that is shared by many users and one
must deal with high latency and limited bandwidth for communication of data. An extreme
situation for applications is the so-called metacomputing problem. Metacomputing refers
to distributed computing with parallel computers located in different cities throughout
the world. It is cheaper way to simulate very large-scale parallel computers and use all
the memory and flops available than building a specific very large-scale parallel computer.
Difficulties with parallel computing because of the limitations of the network have analogues
at the level of a uniprocessor machine. CPU processes are much faster than access to memory
[23] because memory is highly structured into several layers of cache and main memory.
Access to memory is then two orders of magnitude higher for main memory than for L1
cache reference. This is an essential bottleneck for efficient computing and therefore a
driving force for designing new numerical algorithms.

It is then necessary to compensate for the poor performance of the network and/or the
bandwidth to access memory with a domain decomposition algorithm [14] or an operator
splitting algorithm that can cope with these difficulties.

This paper is devoted to a new family of time-marching schemes for coupling codes
that relax the penalty on communication in a parallel computing environment. Several
software tools for coupling codes are available, and large-scale computing on a network
of parallel computers seems to be mature from a computer sciences point of view [4, 7,
8]. From an algorithmic point of view, the key to obtaining parallel efficiency is the ability
to overlap communication by computation. If the algorithm is not specially designed to
relax the intercode communication, then, a priori, the speed of communication between
the processors that run the two different codes must be of the same order as that between
processors that run the same code in parallel.

In this paper, we propose some new algorithms for coupling codes that are easy to
implement and useful for increasing the efficiency of metacomputing with a standard long-
distance network. We have carefully designed test cases that are representative of numerical
challenges such as stiffness of ODE systems, the bifurcation phenomenon, and the sharp
transition front in space for PDE systems. Numerical results shown are quite encouraging
and deserve some analysis. In addition, we implemented a nontrivial example of metacom-
puting in combustion to demonstrate that even with middle-scale problems, efficient meta-
computing with two modern parallel computers linked by a slow network can be obtained.

The outline of the paper is as follows. Section 2 gives the adaptive time-marching scheme
for a coupled system of ODEs. Section 3 extends this technique to a system of PDEs.
Section 4 gives a numerical application to the predator–prey model. Section 5 is devoted to
a numerical validation of our coupling schemes for combustion problems. Section 6 demon-
strates the parallel efficiency of our coupling scheme running on two faraway parallel com-
puters linked by a 10 Mbits/s network. Section 7 gives some conclusions and perspectives.

2. MODEL PROBLEMS AND NUMERICAL SCHEMES WITH SYSTEMS OF ODES

We consider the system of two coupled differential equations

Ẋ = F(X,Y), (1)
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Ẏ = G(X,Y), (2)

where the dot represents the time derivative. We consider second-order schemes of the form

3Xn+1− 4Xn + Xn−1

21t
= F(Xn+1,Y∗,n+1) (3)

3Yn+1− 4Yn + Yn−1

21t
= G(X∗,n+1,Yn+1). (4)

For X∗,n+1= Xn+1 andY∗,n+1=Yn+1, we obtain a fully implicit scheme. Our goal is to
compute (3) and (4) in parallel, and therefore to use weak coupling in time marching; we
therefore introduce a prediction ofXn+1 (respectivelyYn+1) in (4) (respectively (3)). We
assume that (3) is computed on machine I and (4) is computed on machine II. LetτI be the
elapsed time needed to computeXn+1 whenXn, Xn−1, Y∗,n+1 is available in the memory
of machine I. We make a similar hypothesis for machine II and further assume for simplicity
thatτ = τI = τII .

We assume that the speed of the network that links these two machines is such that
the elapsed time needed to send respectivelyX∗,n+1 andY∗,n+1 from machine I and II to
machine II and I is bounded bypτ , p being an integer. In an ideal worldp should be at
most 1, but we examine a realistic situation for the so-called metacomputing for which we
anticipatep as large as 10. A second-order extrapolation is written as

X∗,n+1 = (p+ 1)Xn−p+1− pXn−p.

A similar formula holds forY∗,n+1. Becausep can be large, we may want to use a third-order
formula,

X∗,n+1 = (p+ 1)

(
p

2
+ 1

)
Xn−p+1− (p2+ 2p)Xn−p + p2+ p

2
Xn−p−1.

A similar formula holds forY∗,n+1. We denote such a schemeC(p, 1, j ) with j = 2 or 3,
the order of extrapolation. The drawback of this scheme from the network point of view
is that machine I and machine II exchange two messages at every time step. The network
will then be very busy and the buffering of the messages may affect the communication
speed. In order to further relax this constraint, we therefore restrict ourselves to exchanging
the messages at everyq time step. The same dataXn−p+1 and Xn−p will then be used to
predict X∗,n+k for q consecutive time steps: the second-order extrapolation formula used
on machine II is written as

X∗,n+k = (p+ k)Xn−p+1− (p+ k− 1)Xn−p, k = 1 · · ·q.

As previously mentioned, an accuracy constraint may lead us to use a third-order extrapo-
lation,

X∗,n+k = (p+ k)

(
p+ k− 1

2
+ 1

)
Xn−p+1− ((p+ k− 1)2+ 2(p+ k− 1))Xn−p

+ (p+ k− 1)2+ (p+ k− 1)

2
Xn−p−1.
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FIG. 1. Communication schedule for theC(5, 5, j ) scheme.

We denote such a scheme asC(p,q, j ) with j = 2 or 3 as the order of extrapolation. Figure 1
exemplifies the communication schedule for schemeC(5, 5, j ). It is straightforward to show
that the truncation error of the scheme is of order 2. The explicit dependence on previous
time steps, supposed by the predictorsX∗,n+1 and by the formulaeY∗,n+1, is going to impose
some stability constraint on the time step. We anticipate that this stability constraint will be
weak in the case of weak coupling of the two PDEs. This will be defined more rigorously
later on. Furthermore it is important to note that the scheme should be adaptive in time, in
particular when the solution of the PDE system goes through oscillation relaxations.

Many techniques have been developed to control the error for the ODE solver [3]. We
first notice that for our scheme, we can monitor the difference between the predicted
value of (X∗,n+k,Y∗,n+k) used on machine (II, I) and the value actually computed on
machine (I, II) with theC(p,q, j ) scheme later: this difference is a lower bound on
the overall error of the scheme. Second, we compare second- and third-order extrapo-
lations to get an asymptotic estimate of the error of the prediction. Therefore the delay
p+q should decrease when the error is larger than the tolerance number. This is a first
step in adaptive control of communication processes. We notice that the monitoring of
the error does not require additional communication of data fields but mainly additional
memory.

A more flexible and efficient way of using the network between the two machines is to
use asynchronous communication [1], i.e., to let delayp evolve in time marching in such a
way that as soon as the information arrives, it is used. The adaptive criterion defined above
then limits the number of time stepsq where the same information can be re-used, although
p+ q should be such that theaccuracyof the approximation and thestability of the time
marching are satisfied.

In order to study the stability of the scheme, we compute the stability constraint on the
time step with a linear theory. This shows in which circumstances algorithmC(p,q, j ) is
not suitable. Let us consider the linear ODE system

ẋ = axx + cx y (5)

ẏ = cyx + ayy. (6)

Its solution remains bounded iff

(ax + ay) < 0, and cxcy < 0.

We notice that the characteristic polynomial of the matrix is invariant to transformations on
cx andcy such thatcxcy=Ct and to the permutationax←→ay. With Maple, we computed
the amplification matrix of schemesC(p,q, 2) for some given integersp andq with p≤q.
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For theC(p, 1, 2) scheme, this matrixA is written

whereα= (3− 2dtax)
−1, β = (3− 2dtay)

−1, α̃= 2cx dt α, β̃ = 2cy dt β, On
m is a zeros

matrix of m rows andn columns, and I m
m is the identity matrix of rankm. An analogous

matrix can be written for theC(p, 1, 3) case.
It is easy to compute the spectral radius of the amplification matrix for some given

numerical values of the coefficientsax, ay, cx, cy and derive the stability bound on the time
step;Mapleallows the user to choose an arbitrary number of digits for the numerics and
derive a reliable numerical approximation of the spectral radius of the amplification matrix.
However, direct numerical simulations have been used to check the time step constraint
as well. For theC(p, p, 2) scheme, the construction of the amplification matrix is not
straightforward. We first use the following pseudo code written inMaple,

n := 2 ∗ (p+ 1) : A := array(1..n, 1..n) :

for k from0 to p− 1 do

X(N + k) := expand(alpha ∗ (4 ∗ X(N + k− 1)− X(N + k− 2))

+ alpha1 ∗ ((p+ k+ 1) ∗ Y(N − p)− (p+ k) ∗ Y(N − p− 1))) :

Y(N + k) := expand(alpha ∗ (4 ∗ Y(N + k− 1)− Y(N + k− 2))

+ alpha1 ∗ ((p+ k+ 1) ∗ X(N − p)− (p+ k) ∗ X(N − p− 1))) :

od :

to generate all the formulae needed in the construction ofA. alpha, alpha1,. . . are con-
stant coefficients given in theC(p, p, 2) scheme as a function of the time step and ODE
coefficients. Then we identify each element of the matrix with the following pseudo code

for from 1 to p+ 1 for k from1 to p+ 1 do

A[ j, k] := coef f(X(N + p− j ), X(N − k), 1) : od : od :
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FIG. 2. Upper bound on the time step withax =−1, cx =−3, cy= 1,ay=−2, withC(p, 1, 2),s; C(p, 1, 3),
+; C(p, p, 2),∇; C(p, p, 3),×.

and similar instructions for the subblocksA[ j, k+ p+ 1], A[ j + p+ 1, k], A[ j + p+ 1,
k+ p+ 1], j = 1 . . . p+ 1,k= 1 . . . p+ 1. Then one can again compute the eigenvalues of
this matrix, but the expression of the characteristic polynomial is extremely complicated.
ThisMaplecomputation has been validated with direct numerical simulation as well. Similar
computations can be done withC(p, p, 3).

In Figs. 2 to 4, we have plotted the maximum time step for, respectively,C(p, 1, 2)
(s), C(p, 1, 3) (+), C(p, p, 2) (∇), andC(p, p, 3) (×). The eigenvalues of the differential

FIG. 3. Upper bound on the time step withax =−1, cx =−3, Cy= 1, ay= 0.8, with C(p, 1, 2),s; C(p, 1,
3),+; C(p, p, 2),∇; C(p, p, 3),×.
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FIG. 4. Upper bound on the time step withax =−0.02, cx =−1, cy= 2, ay=−0.01, with C(p, 1, 2),s;
C(p, 1, 3),+; C(p, p, 2),∇; C(p, p, 3),×.

system (5) and (6) corresponding to Figs. 2 to 4 are complex conjugates and the real part
is respectively−1.5 for Fig. 2,−0.1 for Fig. 3, and−0.015 for Fig. 4. The strength of
the coupling is then growing from Fig. 2 to Fig. 4 and the time step restriction due to
the explicit treatment of the coupling terms is increasing as well. An obvious conclusion
from these computations is that the time step constraint induced by the explicit treatment
of the coupling terms in theC(p,q, 2) schemes is unacceptable when it is a strong coup-
ling, i.e.,

|cxcy| ÂÂ |ax + ay|.

Furthermore the time step constraint behaves roughly as the inverse ofp. In addition, these
results show that it is interesting to reuse the same information for some time steps since
the time step limit for theC(p, p, 2) scheme is larger than half the time step limit for
C(p, 1, 2).

The C(p,q, 3), q= 1, q= p, schemes seem to be less sensitive to the nature of the
coupling, but unfortunately the time step constraint is globally more severe than that
for the C(p,q, 2), q= 1, q= p, schemes. One may think that, after all, theC(1, 1, 2)
scheme is the best of all the schemes considered above because it is better to simply
wait for the messages and run the code at the maximum time step than to execute the
C(p, p, j ) scheme which requires roughlyp times more computations for the same re-
sult. However, in practice, for the unsteady phenomena considered thereafter, the time
step is limited independently either by the accuracy constraint or by non-linearities that
have been neglected in this analysis so far. Further, we will show in the next section, de-
voted to PDEs, that the stability of theC(p,q, j ) coupling schemes depends strongly
on the frequency shape of the coupling terms and may improve as the wave number
increases.
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3. MODEL PROBLEMS AND NUMERICAL SCHEMES WITH SYSTEMS OF PDES

We consider unsteady linear systems of PDEs in two space dimensions(x, y)∈ (0, 2π)2
with periodic boundary conditions; we first consider the system (SI)

∂U

∂t
= 1U + bV,

∂V

∂t
= 1V + cU,

and second the system (SII)

∂U

∂t
= 1U + b∇V,

∂V

∂t
= 1V + c∇U.

These systems (SI) and (SII) in Fourier space are written as

˙̂Uk,m = (−k2−m2)Û k,m + bV̂k,m, (8)

˙̂Vk,m = (−k2−m2)V̂k,m + cÛk,m, (9)

and

˙̂Uk,m = (−k2−m2)Û k,m + bi(k+m)V̂k,m, (10)

˙̂Vk,m = (−k2−m2)V̂k,m + ci(k+m)Û k,m, (11)

wherek andm are the wave numbers in thex andy directions, respectively, and

U = 6k,mÛk,m exp(I (kx+my))

respectively

V = 6k,mV̂k,m exp(I (kx+my))

is the Fourier expansion ofU (respectivelyV).
It is clear that these systems of ODEs are weakly coupled for large wave numbersk or m.

Let us assume that the wave numberk is constant. We can make an asymptotic evaluation
of the largest eigenvalue of the amplification matrix of theC(p, 1, 2) scheme for a large
m with Maple in the following way. First we start from the amplification matrixA of the
scheme for theC(p, 1, 2) given in (7). Then we expand withMaple the characteristic
polynomial det(A− λI d). We observe from the asymptotic order of the coefficients of
the characteristic polynomial as a function ofm, m large, that the largest eigenvalue is
asymptotically equivalent to the ratio of the coefficient ofλ with the lowest exponent
divided by the coefficient ofλ with the largest exponent. We obtain for (SI)

|λmax| ∼
(

p2 bc

m4

) 1
2(p+1)

, for p ≥ 2,
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FIG. 5. mcut with b= 10 andc= 5 in system I, withC(p, 1, 2),s; C(p, 1, 3),+; C(p, p, 2),∇; C(p, p, 3),×.

respectively for (SII),

|λmax| ∼
(

p2 bc

m2

) 1
2(p+1)

, for p ≥ 2.

In conclusion, there is no time step constraint for wave numbers withm large enough. Further
we have obtained the value of the wave numbermcut above which theC(p,q={1, p},
j ={2, 3}) schemes are stable for arbitrary time stepdt in (0, 1) with direct numerical
simulation in (8), (9) and (10), (11); see Figs. 5 and 6.

FIG. 6. mcut with b= 1 andc= 2 in system II, withC(p, 1, 2),s; C(p, 1, 3),+; C(p, p, 2),∇; C(p, p, 3),×.
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The coupling for system II is significantly stronger than that in system I but for both
systems it is possible to relax the constraint on communication as follows. We introduce a
second type of adaptivity according to the stability constraint in our time-marching scheme
based on the fact that we need to communicate the lower frequency part of the spectrum of the
coupling terms more often than the higher frequency part. A practical way of implementing
this adaptivity in Fourier space is the following: let

∑
m=−M ...M X̂m be the Fourier expansion

of X. We compute the evolution ofX andY on machine I and II, respectively, and we want
to minimize the constraint on communication ofX andY to machine II and I, respectively.
Let X̃∗,n+1 be the prediction used in theC(p,q, j ) scheme for the Fourier modêXm and
˜̃X∗,n+1 be the prediction used in theC(2p, p, j ) scheme; letσ be a filter of order 8 as in

[16, Sect. 3, p. 654]; we use the prediction∑
m=−M..M

X̂n+1
m =

∑
m=−M..M

σ

(
κ

∣∣∣∣m

M

∣∣∣∣)X̃n+1
m +

∑
m=−M..M

(
1− σ

(
κ

∣∣∣∣m

M

∣∣∣∣)) ˜̃Xn+1
m

with κ >2. This way of splitting the signal guarantees the consistency in time and the
smoothness in space of the prediction. The numerical value ofκ can be chosen according
to the linear stability analysis. This scheme will be denoted asσκC(p/2p,q, j ). We can
decompose the signal into an arbitrary number of levels with different delays depending
on the grid level. However, because the filterσ is smooth, we have redundancy between
two consecutive levels on the interval of frequencies for which the filter is neither zero nor
one. We notice that our scheme can be generalized in a straightforward way to systems of
arbitrary numbers of PDEs and to three space dimensions. The extension of our methodology
to nonperiodic boundary conditions and complex domains is not obvious because in a finite
element framework, filtering a complex data structure is still an open field of research.
However, for spectral methods in space with a simple domain shape, it is relatively easy
to extend our methodology; one convenient possibility is to use a local Fourier basis [15,
20–22]. It is interesting to note that our use of filters for operator splitting complements,
the use of filters in domain decomposition [5].

Many possible applications of our algorithms in chemical modeling with complex chem-
istry [18] or in ecology modeling with competition of species [19] should be investigated.
In the following, we select a few test cases that are examples of oscillation relaxations for
systems of ODEs, bifurcations, and/or stiffness in space for systems of PDEs.

4. AN APPLICATION TO A PREDATOR–PREY MODEL

As a test case, we applied theC(p,q, j ) scheme to the long time integration of oscillation
relaxations with the Lokta–Volterra equations. The dynamical system is

u̇ = au− buv (12)

v̇ = −cv + duv. (13)

Tables I and II summarize the difference in maximum norm between the numerical
solution given by the semi-implicit second-order scheme

3un+1− 4un + un−1

2dt
= aun+1− bun+1(2vn − vn−1) (14)

3vn+1− 4vn + vn−1

2dt
= −cvn+1+ d(2un − un−1)vn+1 (15)
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TABLE I

Error in Maximum Norm for t ∈ [0, 250]

Time step 0.01 0.02 0.04

p= 6, j = 2 (0.031, 0.021) (0.11, 0.07) (0.28, 0.21)
2≤ p≤ 6, j = 2 (0.014, 0.010) (0.046, 0.030) (0.11, 0.07)

with p̄= 4.3 with p̄= 3.6 with p̄= 2.8
p= 6, j = 3 (0.0014, 0.0007) (0.013, 0.007) (0.081, 0.047)
2≤ p≤ 6, j = 3 (0.0004, 0.0003) (0.0015, 0.0011) (0.0047, 0.0033)

with p̄= 4.3 with p̄= 3.6 with p̄= 2.8

and theC(p, p, j ) scheme withj = 2 or 3 for the specific set of coefficients(a, b, c, d)=
(1.2, 1.0, 0.1, 0.2).

In Table II the solution goes through 27 periods of the limit cycles. The time of integration
is therefore long enough for this test case. We can note thatC(6, 6, 3) gives much better
accuracy thanC(6, 6, 2) because the delayp= 6 is relatively large. The adaptive time-
dependent scheme withp varying according to the criterion defined in the previous section
and j = 3 gives the best results.̄p then denotes the average in time of the adaptive delay
obtained with our procedure andp is varied in order to keep max(u∗,n− un, v∗,n− vn) less
than some tolerance number.

If predators and prey are spatially distributed, the reaction–diffusion model can be given
as follows [19]:

∂U

∂t
= α1U + aU − bU V (16)

∂V

∂t
= β1V − cV + dU V. (17)

For our numerical test, we consider this model in one space dimension with periodic bound-
ary conditions inÄ= (0, 2π ). All coefficients are constant excepta, which is a step function
a=aleft on (0,π ) anda=aright on (π, 2π ). The inviscid model, i.e.,α=β = 0, with constant
initial conditionsU =U0, V =V0, can have two distinct limit cycles. The solution (U,V)
of the model problem with nonzero diffusion terms then exhibits an interesting space–time
interaction between two possible limit cycles in time. However, the diffusion terms make
these limit cycles unstable and the system goes to a steady state; the steady limit solution

TABLE II

Error in Maximum Norm for t ∈ [0, 500]

Time step 0.01 0.02 0.04

p= 6, j = 2 (0.054, 0.036) (0.15, 0.10) (0.28, 0.21)
2≤ p≤ 6, j = 2 (0.020, 0.014) (0.073, 0.049) (0.24, 0.16)

with p̄= 4.3 with p̄= 3.7 with p̄= 3.0
p= 6, j = 3 (0.0063, 0.0038) (0.051, 0.031) (0.28, 0.17)
2≤ p≤ 6, j = 3 (0.0004, 0.0003) (0.0016, 0.0011) (0.022, 0.012)

with p̄= 4.3 with p̄= 3.7 with p̄= 3.0
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FIG. 7. Solution of predator–prey model with (α, ν)= (1., 0.5); at steady state,U is in a solid line, andV is
in a dashed line.

itself goes to(U0,V0)= (aleft/b, c/d) on (0, π), (U0,V0)= (aright/b, c/d) on (π, 2π) as
(α, β) goes to zero and we have a transition layer atx=π andx= 2π .

We computed this solution starting from the wave (U,V)= (1+ 0.5 sin(2x), 1+ 0.6
sin(3x)) at time zero as well as with a constant initial condition with the Fourier method
and the semi-implicit second-order scheme

3Un+1− 4Un +Un−1

2dt
= α1Un+1+ aUn+1− b(2Un −Un−1)(2Vn − Vn−1), (18)

3Vn+1− 4Vn + Vn−1

2dt
= β1Vn+1− cVn+1+ d(2Un −Un−1)(2Vn − Vn−1). (19)

The parameter values arealeft= 0.2, aright= 1.2, b= 1., c= 0.1, andd= 0.2. We observe
that the oscillations in time of the solution decrease until they reach a steady-state solution
(see Fig. 7). As usual the speed of convergence to a steady state decreases as (α, β) gets
smaller (see Fig. 8).

We checked for the transient solution that the time accuracy of our various schemes
C(p, 1, j ), C(p, p, j ) andσκC(p/2p, p, j ) conforms to the theory. As for the stability, we
observe, for example, that the schemeσ3C(7/14, 7, 3) converges to the steady solution of
Fig. 7 with time steps as large asdt= 0.1.

We shall now validate our coupling scheme methodology on combustion models that are
truly challenging scientific computing problems.

5. AN APPLICATION TO A COMBUSTION MODEL

Let us consider the following model of combustion coupled to Navier–Stokes equations
written in the Boussinesq approximation,
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FIG. 8. Solution of predator–prey model with (α, ν)= (10−2., 0.5× 10−2); at steady state,U is in a solid line,
andV is in a dashed line.

∂2

∂t
= 12− ∂9

∂z

∂2

∂y
+ ∂9
∂y

∂2

∂z
+ C exp

Z2

1+ δ(1−2), (20)

∂C

∂t
= ε1C − ∂9

∂z

∂C

∂y
+ ∂9
∂y

∂C

∂z
− C exp

Z2

1+ δ(1−2), (21)

∂ω

∂t
= 1ω − ∂9

∂z

∂ω

∂y
+ ∂8
∂y

∂ω

∂z
− RP

∂2

∂y
, (22)

19 = ω, (23)

with (z, y)∈ (−∞,∞)× (0, 2π). 2 denotes the temperature,C the concentration of the
reactant,ω the vorticity, and9 the stream function. The Zeldovich number is a scaled
measure of the activation energy,R is the Rayleigh number, andP is the Prandtl number.

The boundary conditions are periodicity in they direction and

2(∞, y) = 1,2(−∞, y) = 0,C(∞, y) = 0,C(−∞, y) = 1,

ω(±∞, y) = 0, 9(±∞, y) = 0.

We refer to [10] for a precise statement of the model. This system has a traveling wave
solution(2(z−vt),C(z−vt), ω≡ 0, 9 ≡ 0) independent ofy which corresponds to a flat
flame front. For a given Rayleigh numberRand an increasing positive Zeldovich numberZ,
this solution loses its stability at some critical valueZc depending on the control parameter
R. We refer to [9] for the derivation of the neutral stability curves. We shall first test our
C(p,q, j ) scheme on a simplified quasi-linear model of (20)–(23) essential for the analysis
of bifurcation phenomena.



414 GARBEY AND TROMEUR-DERVOUT

5.1. Numerical Study of the Influence of the C(p, q, j) Scheme on Bifurcation

We obtain a weakly nonlinear simplified model by looking at the so-called cellular
instability of a one-dimensional solution; i.e., we expand the temperature as

2(y, z) = 20(z)+2m(z) exp(i m y).

We use a similar expansion for the other unknownsC, ω, and9. Integerm is the possibly
unstable wave number. This model is written as

∂20

∂t
= ∂220

∂z2
+ C0 exp

Z20

1+ δ(1−20)
,

∂C0

∂t
= ε ∂

2C0

∂z2
− C0 exp

Z20

1+ δ(1−20)
,

20(∞, y) = 1,20(−∞, y) = 0,C0(∞, y) = 0,C0(−∞, y) = 1, ω0 ≡ 0, 90 ≡ 0,

followed by

(∂2m/∂t) = (∂22m/∂z2
)−m22m + imΨm(∂20/∂z)+Wm,

(∂Cm/∂t) = ε((∂2Cm/∂z2)−m2Cm)+ imΨm(∂C0/∂z)−Wm,

2m(±∞, y) = 0, Cm(±∞, y) = 0,

where

Wm = Z exp

(
Z20

1+ δ(1−20)

)(
Cm + C0Z(1+ δ)

(1+ δ(1−20))2
2m

)
,

and

(∂ωm/∂t) = (∂2ωm/∂z2)−m2ωm − im RPΘm,

(∂29m/∂z2)−m29m = −ωm,

ωm(±∞, y) = 0, 9m(±∞, y) = 0.

We observe that the first set of PDEs is nonlinear and that20,C0 is not necessarily a
traveling wave. One can obtain oscillation relaxations of the 1D solution for a Zeldovich
number large enough, typicallyZ> 7.8 whenε is small. This is a so-called thermal insta-
bility. Further increases inZ will lead to several bifurcations until chaos occurs. The set
of PDEs for the perturbation terms depending on the wave numberm is linear and gives
the coupling between the combustion process and the convection process: this simplified
model is relevant to the effect of convection on the linear stability of 1D nonlinear solutions.
Furthermore, it is noteworthy that the coupling terms act inthe same timescalewhen the
main approximation20, C0 exhibits oscillation relaxations.

The purpose of choosing this simplified model of combustion as a test case for our
coupling scheme is to check thatC(p,q, j ) gives the same bifurcation parameter value for
various p,q≤ 6, j = 2 or 3. For simplicity, let us consider thefirst bifurcation from the
basic solution, withZ= 6 and positive Rayleigh numbers [9]. We applied the numerical
schemesC(p, p, 2) for p= 1, 3, 6 to compute the solution of our simplified model with the
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adaptive domain decomposition spectral method described in [10]. This scheme is written

2n+1
m −2n

m

dt
= ∂22n+1

m

∂z2
−m22n+1

m + imΨ∗,n+1
m

∂2n
0

∂z
+Wn

m,

Cn+1
m − Cn

m

dt
= ε
(
∂2Cn+1

m

∂z2
−m2Cn+1

m

)
+ imΨ∗,n+1

m

∂Cn
0

∂z
−Wn

m,

∂ωn+1
m − ωn

m

dt
= ∂2ωn+1

m

∂z2
−m2ωn+1

m − im RPΘ∗,n+1
m ,

∂29n+1
m

∂z2
−m29n+1

m = −ωn+1
m .

The initial condition for the perturbation is zero except for temperature:2m is initialized
with a hot spot at the front location of the traveling wave solution (20,C0). We observe
that the first modem= 1 is the most unstable mode.

Figure 9 shows the evolution of the maximum vorticityω1, for different values of the
Rayleigh number in the neighborhood of the stability bound. Curves that end withs (re-
spectively+ and∗) correspond top= 1 (respectivelyp= 3 andp= 6).

We see that the perturbation vanishes belowR= 18.5 and blows up aboveR= 19. The
stability bound is therefore betweenR= 18.5 andR= 19. This result agrees with the direct
numerical simulation [10] of the complete model (20)–(23) as well as with its linear stability
analysis [9]. In addition, we observe that increasing values ofp in theC(p, p, 2) scheme
stabilize the solution, that is, introduce some possible minor delays in the bifurcation.
However, theC(p, p, 2) scheme for moderate values ofp does not significantly affect the
bifurcation parameter value.

We have computed the cellular instability of a pulsating one-dimensional solution corre-
sponding toZ= 8 with our model and obtained the robustness of our scheme with respect

FIG. 9. Evolution of the maximum of the vorticity components in time.
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FIG. 10. Cellular instability pattern of a frontal polymerization; Zeldovich= 6.5 and Rayleigh= 20.

to p as well. Now let us proceed with the direct numerical simulation of the complete model
(20)–(23).

5.2. The Periodic Case

We consider model (20)–(23) with periodic boundary conditions, gravity in the vertical
direction, and the following parameter values. The Prandtl number is fixed to be one, and the
dimensionless mass diffusionε to be 0.005. We studied instabilities appearing for values
of the Zeldovich numberZ significantly less than the critical valueZc when we let the
Rayleigh numberR increase or decrease. Figure 10 displays a typical cellular instability
pattern of a frontal polymerization whenZ= 6 andR= 20; the results show that the frontal
structure is far from being an ordinary layer. We have superposed contour lines for the two-
dimensional temperature and stream function fields on the same graphic. First, it is clearly
seen that there exists a hot spot at the front location where the temperature is greater than the
adiabatic temperature. Second, we see on the same picture the motion of the fluid with two
vortices near the front which stand symmetrically on either side of the hot spot. The overall
structure is time-independent and moves with constant speed in the vertical direction. The
critical value of the Rayleigh number at which the stationary plane ascending front loses
its stability was numerically found between the valuesR= 18 andR= 19. The critical
value predicted by the asymptotic analysis whenε= 0 is approximatively 20 [9]. We have
numerically checked in Section 6.3 that theC(p, p, j ) scheme forp= 2, . . . ,6, andj = 2, 3
reproduces this solution and that the maximum value of the hot spot does not significantly
depend on the delayp.

5.3. The Nonperiodic Case

Last, we consider a more general model with nonperiodic boundary conditions and gravity
with an arbitrary direction; it is worth noticing that we use the biharmonic Navier–Stokes
formulation with9 as the stream function. We refer to [11] for the precise statement of the
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problem and parameters, and we simply recall the basic equations

∂T/∂t + (∂9/∂z)(∂T/∂x)− (∂9/∂x)(∂T/∂z) = 1T + C exp
ZT

1+ δ(1− T)
, (24)

∂C/∂t + (∂9/∂z)(∂C/∂x)− (∂9/∂x)(∂C/∂z) = ε1C − C exp
ZT

1+ δ(1− T)
, (25)

∂19/∂t = (∂9/∂x)(∂19/∂z)− (∂9/∂z)(∂19/∂x)+119 − RPEg · E∇T, (26)

T → 0,C→ 1, 9 → 0, asz→−∞, T → 1,C→ 0, 9 → 0, asz→+∞

9(0, z) = 0, ∂9/∂x(0, z) = 0, 9(L , z) = 0, ∂9/∂x(L , z) = 0, ∀z, (27)

∂T/∂x(0, z) = 0, ∂T/∂x(L , z) = 0, ∂C/∂x(0, z) = 0, ∂C/∂x(L , z) = 0, ∀z.

The system with a zero Rayleigh number has the same well-known one-dimensional stable
traveling wave solutions as before. In addition, this more general model with nonperiodic
boundary conditions has new different possible non-linear regimes.

The existence and stability of these solutions depend on the specific values of the bifur-
cation or control parameters, such as the Zeldovich numberZ or the Rayleigh numberR.
Above theZc value of the Zeldovich number, we can have pulsating fronts and/or spinning
modes, thus making the problem difficult to compute.

When gravity is not parallel to thez direction, the basic solution(T0(z), C0(z),9 ≡ 0)
is unstable and anonplanar flame frontwith a complex structure is obtained.

This model has been set up to describe frontal polymerization processes in a liquid phase;
the model neglects many phenomena such as the change of viscosity in the combustion
front, the effect of compressibility, and the possible formation of gas bubbles at the fronts.
However, this model reproduces the pattern formation observed in experiments [24, 2]
remarkably well.

The reaction diffusion model (24) and (25) is computed with a local Fourier basis as
in [12] on the parallel computer (I). The Navier–Stokes equation (26) is computed with a
local Fourier basis as well as [13] on the parallel computer (II). The method for the solution
has been validated by comparison with a classical Chebyshev high-order finite difference
method [10].

Figure 11 shows the effect of hydrodynamics on the structure of the flame front when
the channel ishorizontaland gravity is vertical. Thin solid lines represent the temperature
isovalues, while dashed lines represent the stream function isovalues. The thick solid line
represents the location of the front, centered on the level setC= 0.5. The computation was
done with a total ofNx = 112 by Nz= 256 Fourier modes on a physical domain of size
[0, 4π ]× [0, 90]. The horizontalz direction is the direction of propagation of the front. The
Zeldovich number is equal to 6., the Rayleigh number is equal to 1.5, the Prandtl number
is P= 1, the mass diffusion is given byε= 0.02, and the time step is set todt= 0.01. This
solution is a traveling wave moving toward the left with a hot spot close to the top wall of the
horizontal channel. The location of the hot spot and the front curvature of the concentration
profile are closely related to the circular motion of the flow. This example shows that one
can compute anonplanarflame front structure with local Fourier basis.

We are mainly interested in using this problem as a nontrivial test case to demonstrate
and validate the feasibility of our approach with metacomputing. The metacomputing ex-
periments described hereafter are for the generalized model only.



418 GARBEY AND TROMEUR-DERVOUT

FIG. 11. Superposition of the stream function contour lines (–·–·) to the hot spot formation; localization of
the front is given by the thick line (—).

6. METACOMPUTING EXPERIMENTS

6.1. The Software Configuration

Each code taken separately has a high scalable parallel efficiency mainly because the
domain decomposition involves only local communication between neighbor sub-domains
for a large wave number and/or a small time step [13]. For the experiments of Table III and
Table IV, each uncoupled code has a super linear parallel efficiency. The two codes have
to exchange the temperature from (I) to (II) (the temperature spatial derivative is computed
in (II)), and the stream function from (II) to (I) (the stream function spatial derivatives are
computed in (I)).

The two parallel codes use the same global grid to represent the unknown variables.
The data distribution on each node is specified by the programmer, who can use a different
number of sub-domains for each application. Thus the communication of one domain’s data
managed by a code A to a code B requires different numbers of send or receive messages
with different data size depending on each processor.

To simplify the nonblocking communication programming, which manages the coupling
terms between the two physical models on each code, we developed a portable inter-code
communication library (PIPCL) [6].

This communication library computes the array-based communication schedules and
creates a one-to-one implicit mapping between each data representation. Programming the
send or the receive communication of the data field from A to B with PIPCL requires only
one instruction, as in MPI [6].

As the data distribution of a grid is not known at compilation time, the data distribution
of an application is hidden from the other applications, allowing an easy parallel program
interoperability on heterogeneous computers. This library, based on the MPI library [17],
is compiled with the MPICH 1.1 distribution.
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TABLE III

Comparison of theC(p, q, j) Schemes, with Three Processors for the Navier–Stokes Code

and Three Processors for the Combustion Code

C(6, 6, 3) C(6, 6, 2) C(4, 4, 3) C(4, 4, 2) C(3, 3, 3) C(3, 3, 2)

Coupled code with SAFIR 10Mb/s
Combustion (CDCSP, Lyon)

Min: 108.37 102.29 118.89 108.83 135.51 118.69
Max: 132.10 112.91 180.72 116.57 151.45 174.39
Average: 112.80 105.01 125.66 112.22 141.17 128.18

Navier–Stokes (IPGP, Paris)
Min: 116.22 109.39 124.53 114.23 136.46 120.39
Max: 145.08 120.04 191.48 121.27 152.89 172.69
Average: 120.73 112.12 131.41 117.24 142.66 129.20

Ratio 0.8596 0.9179 0.7872 0.8742 0.7253 0.7926
Efficiency 58.44% 62.40% 52.95% 58.89% 47.96% 52.44%

Coupled code with FDDI: 100Mb/s
Combustion (IPGP, Paris)

Min: 96.04 94.81 99.12 98.45 104.00 102.09
Max: 105.01 109.55 105.29 104.60 109.49 106.03
Average: 93.53 98.68 101.66 101.58 106.32 103.93

Navier–Stokes (IPGP, Paris)
Min: 102.78 101.78 103.65 102.73 106.27 103.89
Max: 105.82 114.85 106.73 107.58 110.28 107.86
Average: 103.82 103.69 105.12 104.35 107.67 105.47

Ratio 0.9996 0.9926 0.9841 0.9822 0.9610 0.9709
Efficiency 67.11% 66.95% 65.83% 65.61% 63.62% 64.46%

Noncoupled codes
Combustion (IPGP, Paris)

Min: 32.42 32.29 32.30 32.39 32.50 32.39
Max: 32.97 32.83 33.01 33.05 32.83 32.75
Average: 32.69 32.56 32.67 32.63 32.66 32.58

Navier–Stokes (IPGP, Paris)
Min: 102.67 101.62 102.44 101.66 102.46 101.27
Max: 105.33 104.28 104.39 103.40 104.94 103.32
Average: 103.78 102.92 103.45 102.49 103.47 102.40

Ratio 1 1 1 1 1 1
Efficiency 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

6.2. The Hardware Configuration

For our experiment the parallel computer (I) is a Tru cluster 4100 from DEC with 400-
MHz alpha chips located in Lyon, while the parallel computer (II) is a similar parallel
computer located in Paris but with 440-MHz alpha chips.

The distance between Paris and Lyon is about 500 km. Each parallel computer is a
cluster of alpha servers linked by an FDDI 100 Mbits/s local network. Thanks to project
SAFIR, France Telecom has provided a full duplex 10 Mbits/s link between these two
parallel computers through an ATM Fore interface at 155 Mbits/s. The internal speed of the
network in each parallel computer is about 80 times faster with the memory channel and
10 times faster when the FDDI ring is operated. ATM is used to guarantee the quality of
service of the long-distance 10 Mbits/s connection.
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TABLE IV

Results with Load Balancing between the Noncoupled Codes

200 iterations Processors Max (s) Min (s) Average (s) Efficiency Ratio

Nz= 64, Nx= 120
SAFIR coupled PNS= 4 221.04 212.89 216.19

PCB= 2 210.82 200.13 204.56 80.60% 0.9574
FFDI coupled PNS= 4 208.24 195.68 202.05

PCB= 2 192.87 180.23 187.68 91.24% 1.0244
Noncoupled PNS= 4 208.45 205.13 206.98

PCB= 2 109.43 108.41 108.90 100.0% 1.

Nz= 64, Nx= 180
SAFIR coupled PNS= 6 272.20 253.09 260.50

PCB= 3 295.25 240.02 247.86 73.87% 0.8093
FFDI coupled PNS= 6 209.33 199.46 204.76

PCB= 3 194.66 185.28 189.69 93.98% 1.0296
Noncoupled PNS= 6 214.38 205.97 210.82

PCB= 3 158.92 149.24 155.64 100.0% 1.

Nz= 64, Nx= 240a

SAFIR coupled PNS= 4 157.45 149.81 153.28
PCB= 3 141.00 133.45 136.88 63.81% 0.8030

FFDI coupled PNS= 4 126.11 124.53 125.67
PCB= 3 107.22 105.30 106.51 77.83% 0.9794

Noncoupled PNS= 4 123.79 122.38 123.08
PCB= 3 64.52 63.76 64.12 100.0% 1.

Nz= 128, Nx= 120
SAFIR coupled PNS= 4 253.97 241.22 247.79

PCB= 2 241.50 228.89 235.38 71.33% 0.8405
FFDI coupled PNS= 4 208.08 199.38 205.08

PCB= 2 197.17 184.73 190.78 86.76% 1.0155
Noncoupled PNS= 4 208.95 206.89 208.26

PCB= 2 105.32 104.49 104.84 100.0% 1.

Nz= 128, Nx= 180
SAFIR coupled PNS= 6 306.76 285.09 298.23

PCB= 3 294.26 271.71 284.95 65.85% 0.7932
FFDI coupled PNS= 6 238.60 215.00 224.62

PCB= 3 222.73 199.75 209.35 88.13% 1.0532
Noncoupled PNS= 6 241.94 228.56 236.57

PCB= 3 107.97 106.58 107.26 100% 1.

a 80 iterations.

Figure 12 gives the actual measured speed of the network depending on the size of the
packages. It consists in blocking send and receive messages between one processor in Lyon
and one processor in Paris with increasing message lengths in bits.

The times in Fig. 12 are the total average elapsed times for one execution with a sample
of 100 executions: therefore they include CPU time to prepare the packages for ATM and
to buffer the messages in the application sent with MPI. The time is then measured by
appropriate MPI call in the application code.

The communication bandwidth depends on the size of the message. It seems linear from
64× 103 bits to 64× 105 bits; the communication time increases with the same amplification
factor of value 10 as the message length. But for a message size of 64× 106 bits the
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FIG. 12. Performance of SAFIR network between Paris and Lyon.

amplification factor is only 5 with a total time of 17.96 s! This figure shows that it is
difficult to model the network performances a priori. In Fig. 12, we approximate the start-
up of the distant processor communication to be 0.0141 s by using extrapolation of the
curve toward the origin. The reported results of Fig. 12 will be used later to evidence that
a trivial coupling scheme that exchanges its flow field at every time step is not a practical
solution for metacomputing because overlapping communication by computation with non
blocking messages cannot possibly hide communication.

To take an example, the discretization of our combustion model involves few sub-domains
with a total of 128× 128 Fourier modes, i.e., 4 Mbits of data per flow field in double precision
arithmetic. The elapsed computation time per time step for each code is less than a second
while Fig. 12 shows that communication should take more than 2 s.

6.3. The Time-Marching Schemes

We then consider the time-dependent scheme for (I)

3Tn+1− 4Tn + Tn−1

2dt
+ ∂9

∗,n+1

∂z

(
2
∂Tn

∂x
− ∂Tn−1

∂x

)
− ∂9

∗,n+1

∂x

(
2
∂Tn

∂z
− ∂Tn−1

∂z

)
= 1Tn+1+ (2Cn − Cn−1) exp

(
Z(2Tn − Tn−1)

1+ δ(1− 2Tn + Tn−1)

)
with a similar semi-discrete equation for the concentration, coupled to the time-dependent
scheme for (II),

9n+1−9n

dt
+ ∂9

n

∂z

∂19n

∂x
− ∂9

n

∂x

∂19n

∂z
= 119n+1− RPg ·∇T∗,n+1.

The coupling terms9∗,n+1, T∗,n+1 are given by theC(p,q, j ) scheme. We can further
adapt the delay with respect to the wave number as in Section 3.
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Let us introduce the linear analog set of PDEs denoted (III),

∂X

∂t
= 1X + B

∂Y

∂y

∂1Y

∂t
= 11Y + R

∂X

∂y
.

This system in Fourier space is written as

Ẋm,k = (−k2−m2)Xm,k + Bim Ym,k, (28)

Ẏm,k = (−k2−m2)Ym,k − im R

k2+m2
Xm,k, (29)

(30)

wherek andm are the wave numbers in the directionsz andy, respectively. It is clear that
these two ODEs are weakly coupled form large. For example, we obtain withMaple that
the largest eigenvalue of the amplification matrix of theC(p, 1, 2) schemes satisfies

|λmax| ∼
(

p2RB

m4

)1/2(p+1)

for p ≥ 2.
In conclusion, there is no time step constraint for large enough wave numbersm. With

direct numerical simulation, we have obtained the wave number above which theC(p,q, j )
schemes are stable for all time stepsdt in (0, 1). Figure 13 shows that for moderated values
of B andR, theC(p,q, j ) scheme has good stability properties for relatively low modes.

FIG. 13. mcut with B= 1 and R= 10 in system II, withC(P, 1, 2), s; C(p, 1, 3),+; C(p, p, 2), ∇;
C(p, p, 3),×.
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6.4. Parallelism Results from Metacomputing with C(p, q, j) Schemes

Let us consider our 2D applications in combustion with three sub-domains of size 64
modes in thez direction and 40 modes per sub-domain in thex direction. The total number
of data bits that must be exchanged between the two codes in one communication is then
2× 3,932,160 bits.

In order to compare the impact of the network on the performances of the new scheme,
the two coupled codes have been run on the SAFIR network, with one code in Lyon and the
other in Paris, as well as both codes on the same location through the 100 Mbits/s FDDI
local network. In this last case, we ran the two uncoupled codes on the fastest hardware at
our disposal, the IPG Dec Alpha 8100 in Paris.

The ideal situation is when the execution of the coupled code with theC(p,q, j ) scheme
takes the same time as the more time-consuming of the two uncoupled codes. In all test
runs, we let the most intense computing code, i.e., the Navier–Stokes, run on the 440-MHz
processors in Paris rather than on the 400-MHz processors in Lyon.

In order to estimate the efficiency of the schemes for the metacomputing, we define two
measures.

First, we define a low bound efficiency of the coupling as

Ec =
(
TNon-coupled

NS ∗ PNS+ TNon-coupled
CB ∗ PCB

)
max

(
TCoupled

CB , TCoupled
NS

) ∗ (PNS+ PCB)
, (31)

wherePNS and PCB are the numbers of the processors devoted to the NS and CB codes,
respectively.TNon-coupled

NS and TNon-coupled
CB are the elapsed times for respectively the non-

coupled Navier–Stokes code and the non-coupled combustion code whileTCoupled
NS and

TCoupled
NS are the elapsed times for the coupled codes.
The(TNon-coupled

NS ∗ PNS+ TNon-coupled
CB ∗ PCB) term represents an (under) estimation of the

time to run the two codes with only one processor. With a real run on a single processor,
the system should swap the memory on the disk, as opposed to our parallel run. In addition,
we recall that for these applications, we keep the number of processors such that we have
a super linear speedup for each code on its cluster, due to the memory cache effect. This
definition (31) of the efficiency will be used to study the influence of the network (FDDI or
SAFIR) on the performance of the scheme.

Second, we define a ratio number denotedRc/u which is the ratio between the maximum
elapsed time of the noncoupled codes running in parallel on the fastest computer and the
elapsed time of the coupled codes. This ratio makes it possible to measure the elapsed time
loss in the communication between codes. A value ratio of 1 indicates that the communica-
tions between codes (I) and (II) are totally hidden by the computation of the iterative scheme.

Table III gives the elapsed time for each code with a noncoupling and with our coupling
scheme for the different hardware configurations (SAFIR, FDDI, noncoupling) and different
parameter values of theC(p,q, j ) scheme.

As the SAFIR network was not dedicated to this experiment only, some perturbation due
to other traffic may have occurred. The measures for each scheme were taken considering
30 samples of 100 time steps each. Table III summarizes the minimum, maximum, and
average values of the total 100 time steps for each code.

We must notice that the ATM fore interface requires some CPU resources, to pack and to
unpack the communication cells to be submitted. These are totally hidden from the users.
The new generations of ATM hardware will probably fix this problem in the near future.
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For the time being, we restrict ourselves to using only three processors out of four for our
run on a Dec 4100 server. For the sake of simplicity in our first set of experiments, we have
used the same number of processors on each parallel computer.

Table III shows that:

• The best overlapping of intercode communication through the SAFIR network has
been reached with theC(6, 6, 2) scheme with a ratioRc/u= 91.79%. Obviously smaller
delay p or higher order extrapolationj degrades the performance.
• In all cases the FDDI network, whose peak performance is still eight times slower

than the peak performance of the memory channel, is a good enough network for our
metacomputing experiments, sinceRc/u is in all cases larger than 96.1%.
• Nevertheless the two codes are strongly unbalanced in terms of computing cost and

therefore it is not a good solution to take the same number of processors and domains per each
code. However, we observe that in all cases the efficiency obtained with our scheme is very
close to the optimal efficiency: with no delay in communication, i.e., noncoupling elapse
time, this maximum efficiency forC(6, 6, 2) is at mostEc= (3×32.56+3×102.92)

6×102.92 = 65.82%.
The results obtained for the FDDI and the SAFIR networks are close to this value.
• A straightforward coupling code procedure which exchanges a field of data between

parallel computers at each iteration step will give much worse results:

Considering the global data grid size of (240× 128× 64) bits, we can estimate (see
Fig. 12) the time needed to transfer one field from one code to the other at 1 s at least.
Table III gives approximately 1 s per time step for the Navier–Stokes code and 0.33 s for
the combustion code. As Fig. 14 shows, it takes nearly 3.3 s to perform two time steps with
SAFIR. The ratioRc/u then is 60.60% at most; Table III shows that theC(6, 6, 2) scheme
improves the performance of the parallel computation withRc/u up to 92%.

6.5. Parallelism Results on Metacomputing withσκC(p/2p,q, j ) Schemes
and Load Balancing of Codes

In previous results the codes are greatly unbalanced, which leads to an overall mediocre
efficiency of the metacomputing. We consider now theσκC(6/12, 6, 2) schemes and we try
to achieve better load balancing between the computing cost of the two uncoupled codes.
In all runsκ is such that the delay for the first 30 modes isp= 6, and the delay for high
frequencies isp= 12. Different data distributions for the combustion code and the Navier–
Stokes code are used. We set the number of combustion processes running in Lyon to 2 or
3 and we take between 2 and 9 processors for the Navier–Stokes code in Paris. Different
grid sizes 2× Nz× 2× Nx are tested.Nz is for the number of modes in the direction of the

FIG. 14. Schedule for two iterations of the two codes (NS, Navier–Stokes; CB, combustion) with explicit
coupling and no delay for communications.
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front propagation. The number of time steps is set to 200 except for the largest problem
(Nx = 180,Nz= 240) where it is set to 80 for convenience.

For each grid size, Table IV summarizes the best elapsed time obtained for the scheme
using the SAFIR network, between the different data distribution configurations tested. We
found that:

• A load balancing of at least 50% between the two codes (73.82% forNx = 180) has
been achieved.
• The efficiency of the coupling with FDDI is between 78 and 94% while the coupling

with SAFIR goes from 64 to 80%.
• The performance of our scheme can deteriorate when the size of the grids is increased.

This degradation is weaker with the FDDI network than with the SAFIR network.
• We notice that the elapsed time for noncoupling codes is eventually slightly larger than

the elapsed time for the coupling case in the table: the sensitivity of the performance of the
code with respect to memory load seems to allow such surprising results.

7. CONCLUSIONS AND PERSPECTIVES

In this paper, we studied new schemes for the metacomputing of two coupled models
running on distant parallel computers connected with a low bandwidth network. These
schemes are based on the explicit treatment of the coupling terms in the model. Extrapo-
lation formulae are used to relax the number of intercode communications. The schemes’
parameters have to be set adaptively in order to satisfy the accuracy and stability constraints.

First, we studied the stability and the accuracy of the schemes to solve linear and non-
linear systems of PDEs with and without oscillation relaxations.

• Our linear stability analysis for ODE systems shows the limit of the scheme due to
the explicit treatment of the coupling terms. The stronger the coupling, the smaller the
maximum time step allowed.
• A generalization to a system of PDEs with periodic boundary conditions shows that

one can adapt the delay in the coupling scheme with respect to the wave number in order
to further relax the penalty on communications.
• Several numerical examples confirm the stability and accuracy properties of our

scheme. In particular, we checked on a nontrivial combustion model that the scheme
C(p, p, 2) does not significantly affect the bifurcation parameter values for moderate values
of the delay.

Second, we tested the parallel efficiency of the scheme with two distant parallel computers
running coupled codes with moderate data size, connected with a 10 Mbits/s ATM link. We
have shown that:

• TheC(p,q, j ) scheme really makes possible the use of far away parallel computers
for metacomputing. Sources of inefficiency are then due to mainly unbalanced load between
the two codes.
• TheσκC(p/2p,q, j ) scheme makes it possible to hide intercode communication quite

well, even if the network communication bandwidth is slow. Between 63 and 80.60%
(respectively 77.83 and 93.98%) efficiency has been reached with respectively 10 Mbits/s
(and 100 Mbits/s) links for the test cases under consideration.
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The real advantage of metacomputing with two far away parallel computers over classical
parallel computing on a single large parallel computer has not been dealt with in this paper.
But we have shown that improving the algorithm of coupling codes can make possible
the efficient parallel metacomputing of an application with a slow network. The future of
metacomputing should be the resolution of so-called “grand challenge” problems which
cannot be solved on a single parallel computer. Our next step in this research is to consider
large sets of coupled PDEs that are characteristic of combustion problems with realistic
chemistry.
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