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In this paper we address the challenge of metacomputing with two distant parallel
computers linked by a slow network and running the numerical approximation of
two sets of coupled PDEs. Several software tools are available for coupling codes,
and large-scale computing on a network of parallel computers seems to be mature
from a computer science point of view. From an algorithmic point of view, the
key to obtaining parallel efficiency is the ability to overlap communication with
computation: a priori, the speed of communication between the processors thatrunthe
two different codes must be of the same order as that between processors that run the
same code in parallel. However, a local network of processors is still faster than along
distant network used for metacomputing by one or two orders of magnitude at least.
In this paper, to overcome this limitation, we study some new adaptive time-marching
schemes for coupling codes so that efficient metacomputing may be obtained. We
will focus on stability and accuracy issues in order to minimize the communication
processes and define under which conditions our schemes are numerically efficient.
We give several examples of applications chosen as representative test cases for the
numerical validation of our algorithms. Finally, efficient metacomputing with two
distanced computers linked by a slow network is demonstrated for an application in
combustion. @ 2000 Academic Press

Key Wordsalgorithms for specific classes of architectures; complexity and perfor-
mance of numerical algorithms; parallel computation; extrapolation methods; stabil-
ity and convergence of numerical methods; discrete Fourier transforms; combustion;
convective instability.

1. INTRODUCTION AND MOTIVATION

Today, large-scale computation of combustion problems on parallel computers car
done efficiently on dedicated large MIMD systems with hundreds of processors, but

1 This work was backed by &jion Rivhe Alpes.
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cost of these large-scale computers is prohibitive for industry and for an average acade
institution. In particular, in an industry environment, one might be more interested in havi
a robust and efficient code that runs on a cluster of servers linked by an ordinary Ethe
network, than a high-performance code that requires a gigabit internal network. A typi
affordable cluster of machines has a slow network that is shared by many users and
must deal with high latency and limited bandwidth for communication of data. An extren
situation for applications is the so-called metacomputing problem. Metacomputing ref
to distributed computing with parallel computers located in different cities througho
the world. It is cheaper way to simulate very large-scale parallel computers and use
the memory and flops available than building a specific very large-scale parallel compu
Difficulties with parallel computing because of the limitations of the network have analogu
atthe level of auniprocessor machine. CPU processes are much faster than access to me
[23] because memory is highly structured into several layers of cache and main mem
Access to memory is then two orders of magnitude higher for main memory than for

cache reference. This is an essential bottleneck for efficient computing and therefol
driving force for designing new numerical algorithms.

It is then necessary to compensate for the poor performance of the network and/or
bandwidth to access memory with a domain decomposition algorithm [14] or an opera
splitting algorithm that can cope with these difficulties.

This paper is devoted to a new family of time-marching schemes for coupling cod
that relax the penalty on communication in a parallel computing environment. Seve
software tools for coupling codes are available, and large-scale computing on a netw
of parallel computers seems to be mature from a computer sciences point of view [4
8]. From an algorithmic point of view, the key to obtaining parallel efficiency is the abilit
to overlap communication by computation. If the algorithm is not specially designed
relax the intercode communication, then, a priori, the speed of communication betw
the processors that run the two different codes must be of the same order as that bet
processors that run the same code in parallel.

In this paper, we propose some new algorithms for coupling codes that are eas
implement and useful for increasing the efficiency of metacomputing with a standard loi
distance network. We have carefully designed test cases that are representative of nums
challenges such as stiffness of ODE systems, the bifurcation phenomenon, and the <
transition front in space for PDE systems. Numerical results shown are quite encourag
and deserve some analysis. In addition, we implemented a nontrivial example of metac
puting in combustion to demonstrate that even with middle-scale problems, efficient me
computing with two modern parallel computers linked by a slow network can be obtaine

The outline of the paper is as follows. Section 2 gives the adaptive time-marching sche
for a coupled system of ODEs. Section 3 extends this technique to a system of PL
Section 4 gives a numerical application to the predator—prey model. Section 5 is devote
anumerical validation of our coupling schemes for combustion problems. Section 6 dem
strates the parallel efficiency of our coupling scheme running on two faraway parallel co
puters linked by a 10 Mbits/s network. Section 7 gives some conclusions and perspecti

2. MODEL PROBLEMS AND NUMERICAL SCHEMES WITH SYSTEMS OF ODES

We consider the system of two coupled differential equations

X = F(X,Y), 1)
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Y =G(X,Y), €
where the dot represents the time derivative. We consider second-order schemes of the

3XML — 4X" 4 XML

2At — F(xn-&-l, Y*,n+1) (3)
3yl _ gy 4yt
2At = G(X*M Y, Q)

For X*n+1 = X1 gndY*"+1 =Y+l we obtain a fully implicit scheme. Our goal is to
compute (3) and (4) in parallel, and therefore to use weak coupling in time marching;
therefore introduce a prediction &+ (respectivelyy"+1) in (4) (respectively (3)). We
assume that (3) is computed on machine | and (4) is computed on machined| begthe
elapsed time needed to comp&t! whenX", X"~1 Y*™1is available in the memory
of machine I. We make a similar hypothesis for machine Il and further assume for simplic
thatt = I=1-

We assume that the speed of the network that links these two machines is such
the elapsed time needed to send respectidly)** andY*"+* from machine | and Il to
machine Il and | is bounded byz, p being an integer. In an ideal world should be at
most 1, but we examine a realistic situation for the so-called metacomputing for which
anticipatep as large as 10. A second-order extrapolation is written as

X n+1 __ (p+ l)xn p+1 _ pxnfp.

A similar formula holds foly *"**. Becausep can be large, we may want to use a third-ordel
formula,

2
Xt = (p+1)< +1>Xn - (p2+2P)X”’p+pT+anfpil'

A similar formula holds fory*"+1, We denote such a scher@&p, 1, j) with j =2 or 3,
the order of extrapolation. The drawback of this scheme from the network point of vie
is that machine | and machine Il exchange two messages at every time step. The net
will then be very busy and the buffering of the messages may affect the communical
speed. In order to further relax this constraint, we therefore restrict ourselves to exchan
the messages at evemytime step. The same da¥'~P+! and X"~ will then be used to
predict X*"tX for g consecutive time steps: the second-order extrapolation formula us
on machine Il is written as

XM = (p+ X" P — (p+k—DX" P, k=1...q.

As previously mentioned, an accuracy constraint may lead us to use a third-order extr:
lation,

p+k—1
2

Xtk — (p+k)( +1) XPH _ (p+k =12+ 2(p+k—1)X"P

+(p+k—1)2+(p+k—1)

Xn—p—l
2 .
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p=S5 Code 1

@ Time step Aq—=54 Code I

—= Communication

FIG. 1. Communication schedule for tf&5, 5, j) scheme.

We denote such a scheme@, g, j) with j =2 or 3 as the order of extrapolation. Figure 1
exemplifies the communication schedule for sch&tt 5, j). Itis straightforward to show
that the truncation error of the scheme is of order 2. The explicit dependence on previ
time steps, supposed by the predictérd'** and by the formula¥*"+1, is going to impose
some stability constraint on the time step. We anticipate that this stability constraint will
weak in the case of weak coupling of the two PDEs. This will be defined more rigorou:s
later on. Furthermore it is important to note that the scheme should be adaptive in time
particular when the solution of the PDE system goes through oscillation relaxations.

Many techniques have been developed to control the error for the ODE solver [3].
first notice that for our scheme, we can monitor the difference between the predic
value of (X*"tk y*n+ky ysed on machine (ll, 1) and the value actually computed ol
machine (I, Il) with theC(p, q, j) scheme later: this difference is a lower bound on
the overall error of the scheme. Second, we compare second- and third-order extr:
lations to get an asymptotic estimate of the error of the prediction. Therefore the de
p + g should decrease when the error is larger than the tolerance number. This is a
step in adaptive control of communication processes. We notice that the monitoring
the error does not require additional communication of data fields but mainly additior
memory.

A more flexible and efficient way of using the network between the two machines is
use asynchronous communication [1], i.e., to let degdawolve in time marching in such a
way that as soon as the information arrives, it is used. The adaptive criterion defined at
then limits the number of time stegavhere the same information can be re-used, althoug
p + g should be such that treccuracyof the approximation and thetability of the time
marching are satisfied.

In order to study the stability of the scheme, we compute the stability constraint on 1
time step with a linear theory. This shows in which circumstances algofttmaq, j) is
not suitable. Let us consider the linear ODE system

X = axX + Cyy )
y = cyX +ayy. (6)

Its solution remains bounded iff
We notice that the characteristic polynomial of the matrix is invariant to transformations

cx andcy such that,c, = C' and to the permutatios, «<—— a,. With Maple, we computed
the amplification matrix of schemé€X(p, g, 2) for some given integens andq with p <g.
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For theC(p, 1, 2) scheme, this matriA is written

405

@ o [ o oo o [B] erva
1 0o |03 0 0 0 0 @ 0 0
0 1 (o 0 0 0 0 @ 0 0
Y IS ] O || P Y 2 R P
0 0 083 1 0 0 0 0 0 (7)
0 0 |87 (+1B -pB | 48 -5 | 0 0
0 0 @ 0 0 1 0 o 0 0
I L o [ o 1 | o 0
Y 7 | 0 O Y [
0 o |03 0 0 0 0 @ 1 0

wherea = (3— 2dtay) %, = (3 — 2dtay) L, & = 2¢, dt «, B = 2c, dt B, is a zeros
matrix of m rows andn columns, an is the identity matrix of rankn. An analogous
matrix can be written for th€(p, 1, 3) case.

It is easy to compute the spectral radius of the amplification matrix for some giv
numerical values of the coefficierdg, ay, ¢y, ¢y and derive the stability bound on the time
step;Maple allows the user to choose an arbitrary number of digits for the numerics a
derive a reliable numerical approximation of the spectral radius of the amplification matt
However, direct numerical simulations have been used to check the time step const
as well. For theC(p, p, 2) scheme, the construction of the amplification matrix is no
straightforward. We first use the following pseudo code writteMaple,

n:=2x(p+1:A:=array(l.n,1.n):
for k fromOto p— 1do
X(N + k) := expandalpha * (4 x X(N +k — 1) — X(N + k — 2))
+alphal « (p+k+21D)*Y(N—p)—(p+kK*xY(N—-p—-1)):
Y (N + k) := expandalpha x (4« Y(N +k —1) — Y(N + k — 2))
+alphal x (p+k+D«*X(N—p)—(p+ k)« X(N—p—1))):
od:
to generate all the formulae needed in the constructioA.daflpha, alphal,.. are con-
stant coefficients given in thé(p, p, 2) scheme as a function of the time step and ODE
coefficients. Then we identify each element of the matrix with the following pseudo coc
forfrom1lto p+ 1fork froml1lto p+ 1do
Alj, K] :=coef f(X(N+ p—j), X(N—Kk),1):0d: od:
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a=-1,b=-3, c=1,d=-2

maximum time step

FIG.2. Upperboundonthetimestepwih=—1,¢,=—-3,¢,=1,a,=—-2,withC(p, 1,2),0;C(p, 1, 3),
+; C(p, p,2),V; C(p, p, 3), x.

and similar instructions for the subblockgj, k+ p+1], A[j + p+1,K], Alj + p+1,
k+p+1],j=1...p+1,k=1... p+ 1. Thenone can again compute the eigenvalues c
this matrix, but the expression of the characteristic polynomial is extremely complicats
ThisMaplecomputation has been validated with direct numerical simulation as well. Simil
computations can be done wi(p, p, 3).

In Figs. 2 to 4, we have plotted the maximum time step for, respecti@lp, 1, 2)
(0),C(p,1,3) (+),C(p, p, 2) (V),andC(p, p, 3) (x). The eigenvalues of the differential

a=-1, b=-3, ¢=1,d=0.8
0 T T T T T T

maximum time step

FIG. 3. Upper bound on the time step with=—1,c, =—-3,Cy=1,a,=0.8, withC(p, 1, 2),0; C(p, 1,
3),+; C(p, p.2), V; C(p, p, 3), x.
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a=-0.02, b=-1, ¢=2,d=-0.01
T T

maximum time step

FIG. 4. Upper bound on the time step with = —0.02, ¢, = -1, ¢, =2, a,=—0.01, withC(p, 1, 2),0;
C(p,1,3),+;C(p, p, 2), V; C(p, p, 3), x.

system (5) and (6) corresponding to Figs. 2 to 4 are complex conjugates and the real
is respectively—1.5 for Fig. 2,—0.1 for Fig. 3, and—0.015 for Fig. 4. The strength of
the coupling is then growing from Fig. 2 to Fig. 4 and the time step restriction due
the explicit treatment of the coupling terms is increasing as well. An obvious conclusi
from these computations is that the time step constraint induced by the explicit treatn
of the coupling terms in th€(p, g, 2) schemes is unacceptable when it is a strong couy
ling, i.e.,

[CxCy| >> |ax + ay].

Furthermore the time step constraint behaves roughly as the invepsénadddition, these
results show that it is interesting to reuse the same information for some time steps s
the time step limit for theC(p, p, 2) scheme is larger than half the time step limit for
C(p. 1 2.

The C(p,q, 3), g=1, g=p, schemes seem to be less sensitive to the nature of t
coupling, but unfortunately the time step constraint is globally more severe than t
for the C(p, q, 2), q=1, g=p, schemes. One may think that, after all, Bél, 1, 2)
scheme is the best of all the schemes considered above because it is better to si
wait for the messages and run the code at the maximum time step than to execute
C(p, p, j) scheme which requires roughly times more computations for the same re-
sult. However, in practice, for the unsteady phenomena considered thereafter, the
step is limited independently either by the accuracy constraint or by non-linearities t
have been neglected in this analysis so far. Further, we will show in the next section,
voted to PDEs, that the stability of the(p, g, j) coupling schemes depends strongly
on the frequency shape of the coupling terms and may improve as the wave nun
increases.
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3. MODEL PROBLEMS AND NUMERICAL SCHEMES WITH SYSTEMS OF PDES

We consider unsteady linear systems of PDEs in two space dimerigionss (0, 27)?
with periodic boundary conditions; we first consider the system (Sl)

U

— = AU + bV,
ot +

Vv

— = AV +cU,

at +

and second the system (SlI)

au
— = AU +bVV,
ot +

Vv
— = AV +cVU.
ot +

These systems (SI) and (SlI) in Fourier space are written as

Ljk,m = (_k2 - mZ)L’j k,m + b\A/k,mv (8)
Viem = (=k2 = M)V + U, 9)
and
ljk,m = (_k2 - mZ)O k,m + bi (k + m)vk.m, (10)
\7k,m = (—k? = m*)Viem + ci(k + MUy m. (11)

wherek andm are the wave numbers in tixeandy directions, respectively, and
U = ZikmUimexp(l (kx + my))

respectively
V = S mViem exp(l (kx + my))

is the Fourier expansion &f (respectivelyV).

Itis clear that these systems of ODEs are weakly coupled for large wave nukdyens
Let us assume that the wave numkes constant. We can make an asymptotic evaluatiol
of the largest eigenvalue of the amplification matrix of @p, 1, 2) scheme for a large
m with Maplein the following way. First we start from the amplification matéxof the
scheme for theC(p, 1, 2) given in (7). Then we expand wittlaple the characteristic
polynomial det@ — Ald). We observe from the asymptotic order of the coefficients o
the characteristic polynomial as a functionraf m large, that the largest eigenvalue is
asymptotically equivalent to the ratio of the coefficientiofwith the lowest exponent
divided by the coefficient of with the largest exponent. We obtain for (SI)

1
bc e+
|Amaxl ~ (pzﬁ> , forp>2
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b=10, and ¢=5 in System |
40 T T T T T T

cut off wave number

FIG.5. mg,withb=10andc=>5insystem |, witiC(p, 1, 2),0; C(p, 1, 3),+; C(p, p, 2),V; C(p, p, 3), x.

respectively for (SlI),

1
bc 2D
[ Amax| ~ <p2mz> ' , for p> 2.

In conclusion, there is no time step constraint for wave numbersmidginge enough. Further
we have obtained the value of the wave numimgs; above which theC(p, q={1, p},

j =1{2, 3}) schemes are stable for arbitrary time stipin (0, 1) with direct numerical
simulation in (8), (9) and (10), (11); see Figs. 5 and 6.

b=1, and ¢c=2 in System Il
300 T T T T T T

250

200 i

150 - 7

cut off wave number

100 7

50 A

FIG.6. mg,withb=1andc=2insystem Il, withC(p, 1,2),0;C(p, 1,3),+;C(p, p,2),V;C(p, p, 3), x.
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The coupling for system Il is significantly stronger than that in system | but for bot
systems it is possible to relax the constraint on communication as follows. We introduc
second type of adaptivity according to the stability constraint in our time-marching sche|
based on the fact that we need to communicate the lower frequency part of the spectrum c
coupling terms more often than the higher frequency part. A practical way of implementi
this adaptivity in Fourier space is the following: J&},,__\ w Xm be the Fourier expansion
of X. We compute the evolution of andY on machine I and Il, respectively, and we want
to minimize the constraint on communicationXfandY to machine Il and I, respectively.
Let X*M+1 he the prediction used in th&(p, g, j) scheme for the Fourier modé,, and
X*"t1 pe the prediction used in tH@(2p, p, j) scheme; let be a filter of order 8 as in
[16, Sect. 3, p. 654]; we use the prediction

W) o

Z X+t — Z 0(/( %D)N(nn:rl + Z (1 — a</<
m=—M..M m=—M..M m=—M..M
with « > 2. This way of splitting the signal guarantees the consistency in time and t
smoothness in space of the prediction. The numerical valeecah be chosen according
to the linear stability analysis. This scheme will be denotee &(p/2p, g, j). We can
decompose the signal into an arbitrary number of levels with different delays depend
on the grid level. However, because the filbers smooth, we have redundancy between
two consecutive levels on the interval of frequencies for which the filter is neither zero r
one. We notice that our scheme can be generalized in a straightforward way to systen
arbitrary numbers of PDEs and to three space dimensions. The extension of our methoda
to nonperiodic boundary conditions and complex domains is not obvious because in a fi
element framework, filtering a complex data structure is still an open field of resear
However, for spectral methods in space with a simple domain shape, it is relatively e
to extend our methodology; one convenient possibility is to use a local Fourier basis |
20-22]. It is interesting to note that our use of filters for operator splitting complemen
the use of filters in domain decomposition [5].

Many possible applications of our algorithms in chemical modeling with complex cher
istry [18] or in ecology modeling with competition of species [19] should be investigate
In the following, we select a few test cases that are examples of oscillation relaxations
systems of ODEs, bifurcations, and/or stiffness in space for systems of PDEs.

4. AN APPLICATION TO A PREDATOR-PREY MODEL

As atest case, we applied t8¢p, g, j) scheme to the long time integration of oscillation
relaxations with the Lokta—\olterra equations. The dynamical system is

U=au—buw (12)
v = —Cv + duv. (13)
Tables | and Il summarize the difference in maximum norm between the numeri
solution given by the semi-implicit second-order scheme
3untt — 4y 4yt
2dt

3vn+1 — 4" + vn—l
2dt

— aun+l _ bun+1(2Un _ vnfl) (14)

— _Cvr‘IJrl + d(zur‘l _ un—l)UnJrl (15)
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TABLE |
Error in Maximum Norm for t € [0, 250]

Time step 0.01 0.02 0.04
p=6,j=2 (0.031, 0.021) (0.11, 0.07) (0.28,0.21)
2<p<6,j=2 (0.014,0.010) (0.046, 0.030) (0.11, 0.07)

with p=4.3 with p=3.6 with p=2.8
p=6,j=3 (0.0014, 0.0007)  (0.013, 0.007) (0.081, 0.047)
2<p<6,j=3 (0.0004,0.0003) (0.0015,0.0011) (0.0047,0.0033)
with p=4.3 with p=3.6 with p=2.8

and theC(p, p, j) scheme withj =2 or 3 for the specific set of coefficients, b, ¢, d) =
(1.2,1.0,0.1,0.2).

In Table Il the solution goes through 27 periods of the limit cycles. The time of integrati
is therefore long enough for this test case. We can noteQl&it6, 3) gives much better
accuracy tharC(6, 6, 2) because the delgy=6 is relatively large. The adaptive time-
dependent scheme withvarying according to the criterion defined in the previous sectio
and j = 3 gives the best resultp. then denotes the average in time of the adaptive delz
obtained with our procedure anus varied in order to keep max(" —u", v*" —v") less
than some tolerance number.

If predators and prey are spatially distributed, the reaction—diffusion model can be gi
as follows [19]:

ou
aVv

For our numerical test, we consider this model in one space dimension with periodic bou
ary conditions irf2 = (0, 2rr). All coefficients are constant exceptwhich is a step function
a=aer 0N (0,) anda = &ign; ON (, 2). The inviscid model, i.eq = g = 0, with constant
initial conditionsU = Uy, V =V, can have two distinct limit cycles. The solutidd,(V)

of the model problem with nonzero diffusion terms then exhibits an interesting space—ti
interaction between two possible limit cycles in time. However, the diffusion terms ma
these limit cycles unstable and the system goes to a steady state; the steady limit sol

TABLE Il
Error in Maximum Norm for t € [0, 500]

Time step 0.01 0.02 0.04
p=6,j=2 (0.054, 0.036) (0.15, 0.10) (0.28,0.21)
2<p<6,j=2 (0.020,0.014) (0.073, 0.049) (0.24, 0.16)

with 5: 4.3 with 5: 3.7 with 5: 3.0
p=6,j=3 (0.0063, 0.0038)  (0.051, 0.031) (0.28,0.17)
2<p<6,j=3 (0.0004,0.0003) (0.0016,0.0011) (0.022, 0.012)

with 5: 4.3 with 5: 3.7 with 5: 3.0
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solution at steady phase portrait of {U,V} at x=Pi/2
1 11
1
08 \_/\
270N 0.9
0.6 / Y
, \
; . 0.8
N A
X3 BN /
N . . 0.7
0.2 0.6
[} 2 4 6 8 0 0.2 0.4 0.6 0.8 1
X
phase portrait of (U,V) at x=3/2 Pi time derivative
14 2
0
1.2
-2
1 -4
-6
0.8
-8
0.6 -10
0 0.5 1 1.5 0 200 400 600 800 1000

time

FIG. 7. Solution of predator—prey model witk (v) = (1., 0.5); at steady stat&] is in a solid line, and/ is
in a dashed line.

itself goes to(Uop, Vo) = (aet/b, c/d) on (0, ), (Uo, Vo) = (&ignt/b, c/d) on (r, 27) as
(a, B) goes to zero and we have a transition layer &tz andx = 2.

We computed this solution starting from the wawg, {/) = (1+ 0.5sin(2x), 1+ 0.6
sin(3x)) at time zero as well as with a constant initial condition with the Fourier metho
and the semi-implicit second-order scheme

3un+1 —4Un + Un—l
2dt

3vn+1 —4yn + anl
2dt

= aAU™ 4 auU™! —pU" — U YH2v" — v Y, (18)

= BAV"L _cv™l dut —urHv —vih (19)

The parameter values aagw = 0.2, &gy =1.2, b=1.,¢=0.1, andd =0.2. We observe
that the oscillations in time of the solution decrease until they reach a steady-state solu
(see Fig. 7). As usual the speed of convergence to a steady state decreas¢#y geté
smaller (see Fig. 8).

We checked for the transient solution that the time accuracy of our various scher
C(p, L, j),C(p, p,j)ands,C(p/2p, p, j) conforms to the theory. As for the stability, we
observe, for example, that the schess€(7/14, 7, 3) converges to the steady solution of
Fig. 7 with time steps as large d6=0.1.

We shall now validate our coupling scheme methodology on combustion models that
truly challenging scientific computing problems.

5. AN APPLICATION TO A COMBUSTION MODEL

Let us consider the following model of combustion coupled to Navier—Stokes equatic
written in the Boussinesq approximation,
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solution at steady phase portrait of {U,V) at x=Pi/2

0 2 4 6 8 0 0.5 1 1.5 2 2.5
X
phase portrait of (U,V) at x=3/2 Pi time derivative
18 1
16 0
-1
1.4
-2
1.2
-3
1 -4
0.8 -5
0 0.5 1 1.5 0 200 400 600 800 1000

time

FIG.8. Solution of predator—prey model with,(v) = (1072., 0.5 x 1072); at steady staté] is in a solid line,
andV is in a dashed line.

0 _ A® oV 00 n RAARIC) C ex Z0 (20)
at 9z 9y 9y 0z p1+8(1—®)’
aC W aC 9vacC Z0
— =eAC——— 4+ —— —Cexp————, (21)
at 0z ay ay 0z 1+6(1—0©)

VY ® ¢
90 _ pp— 20 3000 30 22)
at dz dy 9y 0z ay
AV = w, (23)

with (z, y) € (—o0, 00) x (0, 27r). ® denotes the temperatur@,the concentration of the

reactantw the vorticity, and¥ the stream function. The Zeldovich number is a scale

measure of the activation enerd¥js the Rayleigh number, arfd is the Prandtl number.
The boundary conditions are periodicity in thelirection and

B(00,yY) =1, 0(—00,y) =0,C(c0,y) =0,C(—00,y) =1,
w(Foo,y) =0, W(£oo,y) =0.

We refer to [10] for a precise statement of the model. This system has a traveling w
solution(® (z—vt), C(z—vt), w =0, ¥ = 0) independent of which corresponds to a flat
flame front. For a given Rayleigh numbiRand an increasing positive Zeldovich num&er
this solution loses its stability at some critical valtiedepending on the control parameter
R. We refer to [9] for the derivation of the neutral stability curves. We shall first test ol
C(p, g, j) scheme on a simplified quasi-linear model of (20)—(23) essential for the analy
of bifurcation phenomena.
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5.1. Numerical Study of the Influence of the C(p, q, j) Scheme on Bifurcation

We obtain a weakly nonlinear simplified model by looking at the so-called cellul:
instability of a one-dimensional solution; i.e., we expand the temperature as

O(Y, 2) = Op(2) + Om(2) expi my).

We use a similar expansion for the other unkno@ns, andW. Integerm is the possibly
unstable wave number. This model is written as

90y 920 Z0g

0 _ 20 coexp—— 0
at 02 TP a6y

8Co 82Co Z®O

0 _ 20 coexp— 0
ot - oz PTIS I ey

@0(00, y) = 19 @0(_00, y) = Ov CO(OO, y) = Oa CO(_OO, y) = 1’ wo = O’ "IJO = 03
followed by

(3Om/3t) = (020m/02%) — MPOm + iMT(3O0/02) + Wi,
(3Cm/0t) = €((3°Cm/0Z%) — M*Cpp) + im®;,(3Co/02) — Wi,
@)m(iOO, y) = 07 Cm(iOO, y) == Oa

where

~ Z0, CoZ(1+56)
Wm =7 exp<m> (Cm + m®m) )

and

(Bwm/0t) = (3%wm/87%) — MPwm —IMRPO,,
(02W,/02%) — MW, = —wm,
wm(£o0,y) =0,  Wy(oo,y) =0.

We observe that the first set of PDEs is nonlinear and @&tCy is not necessarily a
traveling wave. One can obtain oscillation relaxations of the 1D solution for a Zeldovi
number large enough, typicall > 7.8 whene is small. This is a so-called thermal insta-
bility. Further increases iZ will lead to several bifurcations until chaos occurs. The se
of PDEs for the perturbation terms depending on the wave numhsiinear and gives
the coupling between the combustion process and the convection process: this simpl
model is relevant to the effect of convection on the linear stability of 1D nonlinear solutior
Furthermore, it is noteworthy that the coupling terms adhimm same timescalehen the
main approximatior®o, Cy exhibits oscillation relaxations.

The purpose of choosing this simplified model of combustion as a test case for
coupling scheme is to check thatp, g, j) gives the same bifurcation parameter value for
various p, g <6, j =2 or 3. For simplicity, let us consider thirst bifurcationfrom the
basic solution, withZz =6 and positive Rayleigh numbers [9]. We applied the humerice
scheme€(p, p, 2) for p=1, 3, 6 to compute the solution of our simplified model with the



A PARALLEL ADAPTIVE COUPLING ALGORITHM 415

adaptive domain decomposition spectral method described in [10]. This scheme is wri

®nm+1 _ ®nm _ 826)',#1

2n+1 H *n+1a®8 n
—mO, +im¥ T — + W,

dt T a2 0z
1 2 1
Crr:1+ dt_ CI‘?’] — ¢ (a aCZRI;_ _ mZCQ]-&-l) + im‘I’:ﬁan’_l aacz(r; . Wrr’:v
3w21+1 — on, azwrr#l 2 n+l *,N+1
dt =32 — Mo, = —imRPO,™,
aZ\IJIH-l
8ng —mAentt =

The initial condition for the perturbation is zero except for temperat@gis initialized
with a hot spot at the front location of the traveling wave solutieg, Cy). We observe
that the first moden =1 is the most unstable mode.

Figure 9 shows the evolution of the maximum vorticity, for different values of the
Rayleigh number in the neighborhood of the stability bound. Curves that endw(iea
spectively+ and*) correspond tq =1 (respectivelyp = 3 andp = 6).

We see that the perturbation vanishes beRw 185 and blows up abov®=19. The
stability bound is therefore betwe@&h= 185 andR = 19. This result agrees with the direct
numerical simulation [10] of the complete model (20)—(23) as well as with its linear stabili
analysis [9]. In addition, we observe that increasing valueg iofthe C(p, p, 2) scheme
stabilize the solution, that is, introduce some possible minor delays in the bifurcati
However, theC(p, p, 2) scheme for moderate valuesmfioes not significantly affect the
bifurcation parameter value.

We have computed the cellular instability of a pulsating one-dimensional solution cor
sponding toZ = 8 with our model and obtained the robustness of our scheme with resp

Rayleigh = 18. Rayleigh = 18.5
0.035 0.035
0.03 0.03
0.025 0.025
0.02 0.02
0.015 0.015
0.01 0.01
0.005 0.005
0 o
0 2 4 ] 0 2 4 &
time time
Rayleigh = 19.0 Rayleigh = 19.5
0.07 025 s
0.06
0.2
0.05
0.04 i 0.15
0.03 01
0.02
0.01 005
4] V] —year
0 2 4 ] 0 2 4 f
time time

FIG. 9. Evolution of the maximum of the vorticity components in time.
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FIG. 10. Cellular instability pattern of a frontal polymerization; Zeldoviet6.5 and Rayleigh= 20.

to p as well. Now let us proceed with the direct numerical simulation of the complete moc
(20)-(23).

5.2. The Periodic Case

We consider model (20)—(23) with periodic boundary conditions, gravity in the vertic
direction, and the following parameter values. The Prandtl number is fixed to be one, and
dimensionless mass diffusiento be 0.005. We studied instabilities appearing for value:
of the Zeldovich numbet significantly less than the critical valug. when we let the
Rayleigh numbeRR increase or decrease. Figure 10 displays a typical cellular instabili
pattern of a frontal polymerization wheh= 6 andR = 20; the results show that the frontal
structure is far from being an ordinary layer. We have superposed contour lines for the t
dimensional temperature and stream function fields on the same graphic. First, it is cle
seen that there exists a hot spot at the front location where the temperature is greater the
adiabatic temperature. Second, we see on the same picture the motion of the fluid with
vortices near the front which stand symmetrically on either side of the hot spot. The ove
structure is time-independent and moves with constant speed in the vertical direction.
critical value of the Rayleigh number at which the stationary plane ascending front lo:
its stability was numerically found between the valiRs-18 andR=19. The critical
value predicted by the asymptotic analysis wikenO is approximatively 20 [9]. We have
numerically checked in Section 6.3 that®ep, p, j) schemefop=2,...,6,andj =2,3
reproduces this solution and that the maximum value of the hot spot does not significa
depend on the delay.

5.3. The Nonperiodic Case

Last, we consider amore general model with nonperiodic boundary conditions and gra
with an arbitrary direction; it is worth noticing that we use the biharmonic Navier—Stok
formulation withW as the stream function. We refer to [11] for the precise statement of tl
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problem and parameters, and we simply recall the basic equations

AT/t + (0W/32) (AT /axX) — (9W/dxX)(dT/3z) = AT + C exp (24)

zZT
1+6(1-T)

4C/dt + (2W/02)(9C/0x) — (3/8x)(3C/d2) = €AC — Cexpy (25)

zZT
+51-T)
AW/t = (3W/dX) (DAY /3Z) — (IW/3Z)(AAW/dX) + AAY — RPG-VT, (26)

T—-0C—-1V¥ -0, asz — —oo, T—-1C—-0¥ -0, asz — + oo

V(0,2 =0,0¥/x(0,2) =0,¥(L,2) =0,0¥/dx(L,2) =0, vz, (27)
dT/0x(0,z) =0,0T/ax(L,z) =0,0C/3x(0,z) =0,9C/ax(L,z) =0, vz

The system with a zero Rayleigh number has the same well-known one-dimensional st
traveling wave solutions as before. In addition, this more general model with nonperio
boundary conditions has new different possible non-linear regimes.

The existence and stability of these solutions depend on the specific values of the b
cation or control parameters, such as the Zeldovich nurdb@rthe Rayleigh numbeRr.
Above theZ. value of the Zeldovich number, we can have pulsating fronts and/or spinni
modes, thus making the problem difficult to compute.

When gravity is not parallel to thedirection, the basic solutiofy(z), Co(2), ¥ =0)
is unstable and aonplanar flame frontvith a complex structure is obtained.

This model has been set up to describe frontal polymerization processes in a liquid ph
the model neglects many phenomena such as the change of viscosity in the combu
front, the effect of compressibility, and the possible formation of gas bubbles at the fror
However, this model reproduces the pattern formation observed in experiments [24
remarkably well.

The reaction diffusion model (24) and (25) is computed with a local Fourier basis
in [12] on the parallel computer (I). The Navier—Stokes equation (26) is computed witt
local Fourier basis as well as [13] on the parallel computer (II). The method for the soluti
has been validated by comparison with a classical Chebyshev high-order finite differe
method [10].

Figure 11 shows the effect of hydrodynamics on the structure of the flame front wt
the channel ifiorizontaland gravity is vertical. Thin solid lines represent the temperatur
isovalues, while dashed lines represent the stream function isovalues. The thick solid
represents the location of the front, centered on the levé&l se0.5. The computation was
done with a total ofNy =112 by N, =256 Fourier modes on a physical domain of size
[0, 47] x [0, 90]. The horizontat direction is the direction of propagation of the front. The
Zeldovich number is equal to 6., the Rayleigh number is equal to 1.5, the Prandtl num
is P =1, the mass diffusion is given ky= 0.02, and the time step is setdd= 0.01. This
solution is a traveling wave moving toward the left with a hot spot close to the top wall of t
horizontal channel. The location of the hot spot and the front curvature of the concentra
profile are closely related to the circular motion of the flow. This example shows that o
can compute aonplanarflame front structure with local Fourier basis.

We are mainly interested in using this problem as a nontrivial test case to demonst
and validate the feasibility of our approach with metacomputing. The metacomputing
periments described hereafter are for the generalized model only.
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FIG. 11. Superposition of the stream function contour lines-{-to the hot spot formation; localization of
the front is given by the thick line (—).

6. METACOMPUTING EXPERIMENTS

6.1. The Software Configuration

Each code taken separately has a high scalable parallel efficiency mainly because
domain decomposition involves only local communication between neighbor sub-dome
for a large wave number and/or a small time step [13]. For the experiments of Table 11l
Table 1V, each uncoupled code has a super linear parallel efficiency. The two codes t
to exchange the temperature from (1) to (Il) (the temperature spatial derivative is compu
in (1)), and the stream function from (Il) to (1) (the stream function spatial derivatives au
computed in (1)).

The two parallel codes use the same global grid to represent the unknown variak
The data distribution on each node is specified by the programmer, who can use a diffe
number of sub-domains for each application. Thus the communication of one domain’s
managed by a code A to a code B requires different numbers of send or receive mess
with different data size depending on each processor.

To simplify the nonblocking communication programming, which manages the couplil
terms between the two physical models on each code, we developed a portable inter-
communication library (PIPCL) [6].

This communication library computes the array-based communication schedules
creates a one-to-one implicit mapping between each data representation. Programmin
send or the receive communication of the data field from A to B with PIPCL requires or
one instruction, as in MPI [6].

As the data distribution of a grid is not known at compilation time, the data distributic
of an application is hidden from the other applications, allowing an easy parallel progr:
interoperability on heterogeneous computers. This library, based on the MPI library [1

is compiled with the MPICH 1.1 distribution.
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TABLE Il

419

Comparison of theC(p, g, j) Schemes, with Three Processors for the Navier—Stokes Code
and Three Processors for the Combustion Code

C6,6,3) C(6,6,2) C(4,4,3) C(4,4,2) C(33,3) C(33,2
Coupled code with SAFIR 10Mb/s
Combustion (CDCSP, Lyon)
Min: 108.37 102.29 118.89 108.83 135.51 118.69
Max: 132.10 112.91 180.72 116.57 151.45 174.39
Average: 112.80 105.01 125.66 112.22 141.17 128.18
Navier—Stokes (IPGP, Paris)
Min: 116.22 109.39 124.53 114.23 136.46 120.39
Max: 145.08 120.04 191.48 121.27 152.89 172.69
Average: 120.73 112.12 131.41 117.24 142.66 129.20
Ratio 0.8596 0.9179 0.7872 0.8742 0.7253 0.7926
Efficiency 58.44% 62.40% 52.95% 58.89% 47.96% 52.44%
Coupled code with FDDI: 100Mb/s
Combustion (IPGP, Paris)
Min: 96.04 94.81 99.12 98.45 104.00 102.09
Max: 105.01 109.55 105.29 104.60 109.49 106.03
Average: 93.53 98.68 101.66 101.58 106.32 103.93
Navier—Stokes (IPGP, Paris)
Min: 102.78 101.78 103.65 102.73 106.27 103.89
Max: 105.82 114.85 106.73 107.58 110.28 107.86
Average: 103.82 103.69 105.12 104.35 107.67 105.47
Ratio 0.9996 0.9926 0.9841 0.9822 0.9610 0.9709
Efficiency 67.11% 66.95% 65.83% 65.61% 63.62% 64.46%
Noncoupled codes
Combustion (IPGP, Paris)
Min: 32.42 32.29 32.30 32.39 32.50 32.39
Max: 32.97 32.83 33.01 33.05 32.83 32.75
Average: 32.69 32.56 32.67 32.63 32.66 32.58
Navier—Stokes (IPGP, Paris)
Min: 102.67 101.62 102.44 101.66 102.46 101.27
Max: 105.33 104.28 104.39 103.40 104.94 103.32
Average: 103.78 102.92 103.45 102.49 103.47 102.40
Ratio 1 1 1 1 1 1
Efficiency 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

6.2. The Hardware Configuration

For our experiment the parallel computer (1) is a Tru cluster 4100 from DEC with 40
MHz alpha chips located in Lyon, while the parallel computer (Il) is a similar paralle

computer located in Paris but with 440-MHz alpha chips.

The distance between Paris and Lyon is about 500 km. Each parallel computer
cluster of alpha servers linked by an FDDI 100 Mbits/s local network. Thanks to proje
SAFIR, France Telecom has provided a full duplex 10 Mbits/s link between these t
parallel computers through an ATM Fore interface at 155 Mbits/s. The internal speed of
network in each parallel computer is about 80 times faster with the memory channel
10 times faster when the FDDI ring is operated. ATM is used to guarantee the quality
service of the long-distance 10 Mbits/s connection.
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TABLE IV
Results with Load Balancing between the Noncoupled Codes

200 iterations Processors Max (s) Min (s) Average (s) Efficiency Ratio

Nz=64, Nx=120

SAFIR coupled Pys=4 221.04 212.89 216.19
Peg=2 210.82 200.13 204.56 80.60% 0.9574
FFDI coupled Pus=4 208.24 195.68 202.05
Peg=2 192.87 180.23 187.68 91.24% 1.0244
Noncoupled Pws=4 208.45 205.13 206.98
Pig=2 109.43 108.41 108.90 100.0% 1.
Nz =64, Nx=180
SAFIR coupled Pys=6 272.20 253.09 260.50
Peg=3 295.25 240.02 247.86 73.87% 0.8093
FFDI coupled Pus=6 209.33 199.46 204.76
Peg=3 194.66 185.28 189.69 93.98% 1.0296
Noncoupled Pys=6 214.38 205.97 210.82
P =3 158.92 149.24 155.64 100.0% 1.
Nz =64, Nx= 240
SAFIR coupled Pys=4 157.45 149.81 153.28
P =3 141.00 133.45 136.88 63.81% 0.8030
FFDI coupled Pus=4 126.11 124.53 125.67
Pg=3 107.22 105.30 106.51 77.83% 0.9794
Noncoupled Pys=4 123.79 122.38 123.08
Peg=3 64.52 63.76 64.12 100.0% 1.
Nz=128, Nx=120
SAFIR coupled Pys=4 253.97 241.22 247.79
Peg=2 241.50 228.89 235.38 71.33% 0.8405
FFDI coupled Pus=4 208.08 199.38 205.08
Peg=2 197.17 184.73 190.78 86.76% 1.0155
Noncoupled Pys=4 208.95 206.89 208.26
Peg=2 105.32 104.49 104.84 100.0% 1.
Nz=128, Nx=180
SAFIR coupled Puys=6 306.76 285.09 298.23
Peg=3 294.26 271.71 284.95 65.85% 0.7932
FFDI coupled Pus=6 238.60 215.00 224.62
P =3 222.73 199.75 209.35 88.13% 1.0532
Noncoupled Pys=6 241.94 228.56 236.57
Peg=3 107.97 106.58 107.26 100% 1.

280 iterations.

Figure 12 gives the actual measured speed of the network depending on the size o
packages. It consists in blocking send and receive messages between one processor in
and one processor in Paris with increasing message lengths in bits.

The times in Fig. 12 are the total average elapsed times for one execution with a san
of 100 executions: therefore they include CPU time to prepare the packages for ATM ¢
to buffer the messages in the application sent with MPI. The time is then measured
appropriate MPI call in the application code.

The communication bandwidth depends on the size of the message. It seems linear
64 x 10° bits to 64x 10° bits; the communication time increases with the same amplificatia
factor of value 10 as the message length. But for a message size>ol@4bits the
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FIG. 12. Performance of SAFIR network between Paris and Lyon.

amplification factor is only 5 with a total time of 17.96 s! This figure shows that it i
difficult to model the network performances a priori. In Fig. 12, we approximate the sta
up of the distant processor communication to be 0.0141 s by using extrapolation of
curve toward the origin. The reported results of Fig. 12 will be used later to evidence t
a trivial coupling scheme that exchanges its flow field at every time step is not a pract
solution for metacomputing because overlapping communication by computation with r
blocking messages cannot possibly hide communication.

To take an example, the discretization of our combustion model involves few sub-dome
with atotal of 128x 128 Fourier modes, i.e., 4 Mbits of data per flow field in double precisio
arithmetic. The elapsed computation time per time step for each code is less than a se
while Fig. 12 shows that communication should take more than 2 s.

6.3. The Time-Marching Schemes

We then consider the time-dependent scheme for (I)

0z 0z

3Tn+l —4T" +Tn—l N a\p*,n+l (ZaTn aTn—l> a\y*,n-&-l (23Tn aTn—l)

2dt 0z ax  ax X

Z@T"—-Th
1+6(1—-2T" 4T

= AT 4 (2Cc"—C"Y) exp(

with a similar semi-discrete equation for the concentration, coupled to the time-depenc
scheme for (II),

Pt _gpn N AU IAWN G JAWD

= AAY™! — RPg. VT*M,
dt 9z 00X ax 0z 9-V

The coupling termsb*"*1 T*M1 gre given by theC(p, g, j) scheme. We can further
adapt the delay with respect to the wave number as in Section 3.
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Let us introduce the linear analog set of PDEs denoted (ll1),

X aY

— = AX+B—
ot * ay
dAY aX
—— = AAY + R—.
ot ay

This system in Fourier space is written as

Xmk = (K> — m?) X + Bim Y. (28)

. B 5 imR

Ymk = (=K — m)Ymy — mxm,h (29)
(30)

wherek andm are the wave numbers in the directianandy, respectively. It is clear that
these two ODEs are weakly coupled fararge. For example, we obtain witaple that
the largest eigenvalue of the amplification matrix of @, 1, 2) schemes satisfies

szB 1/2(p+1)
| Amax] "’( m )

for p > 2.

In conclusion, there is no time step constraint for large enough wave numb#&vih
direct numerical simulation, we have obtained the wave number above whicliphe, j)
schemes are stable for all time stefisn (0, 1). Figure 13 shows that for moderated values
of BandR, theC(p, g, j) scheme has good stability properties for relatively low modes

B=1, and R=10 in System !
25 T T T T

20

cut off wave number

FIG. 13. mg, with B=1 and R=10 in system Il, withC(P, 1, 2), O; C(p, 1, 3),+; C(p, p, 2), V;
C(p, p, 3), x.
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6.4. Parallelism Results from Metacomputing with C(p, q, j) Schemes

Let us consider our 2D applications in combustion with three sub-domains of size
modes in the direction and 40 modes per sub-domain inxtdirection. The total number
of data bits that must be exchanged between the two codes in one communication is
2 x 3,932,160 bits.

In order to compare the impact of the network on the performances of the new sche
the two coupled codes have been run on the SAFIR network, with one code in Lyon and
other in Paris, as well as both codes on the same location through the 100 Mbits/s FI
local network. In this last case, we ran the two uncoupled codes on the fastest hardwa
our disposal, the IPG Dec Alpha 8100 in Paris.

The ideal situation is when the execution of the coupled code witG flpeq, j) scheme
takes the same time as the more time-consuming of the two uncoupled codes. In all
runs, we let the most intense computing code, i.e., the Navier—Stokes, run on the 440-I
processors in Paris rather than on the 400-MHz processors in Lyon.

In order to estimate the efficiency of the schemes for the metacomputing, we define
measures.

First, we define a low bound efficiency of the coupling as

Non-coupled Non-coupled
P * Pys + T, P *PCB)

E.— ( NS CB . (31)
©T max(TSE TSP s (Pus + Pes)

where Pys and Pcg are the numbers of the processors devoted to the NS and CB cod
respectively Toe Pl ang TXO™UPd are the elapsed times for respectively the non
coupled Navier—Stokes code and the non-coupled combustion code 'V}fé’if@'ed and
TSPl are the elapsed times for the coupled codes.

The (TP, Pys -+ TAS P Peg) term represents an (under) estimation of the
time to run the two codes with only one processor. With a real run on a single proces:
the system should swap the memory on the disk, as opposed to our parallel run. In addi
we recall that for these applications, we keep the number of processors such that we
a super linear speedup for each code on its cluster, due to the memory cache effect.
definition (31) of the efficiency will be used to study the influence of the network (FDDI c
SAFIR) on the performance of the scheme.

Second, we define a ratio number dend®g, which is the ratio between the maximum
elapsed time of the noncoupled codes running in parallel on the fastest computer anc
elapsed time of the coupled codes. This ratio makes it possible to measure the elapsec
loss in the communication between codes. A value ratio of 1 indicates that the commun
tions between codes (1) and (11) are totally hidden by the computation of the iterative schel

Table Il gives the elapsed time for each code with a noncoupling and with our coupli
scheme for the different hardware configurations (SAFIR, FDDI, noncoupling) and differe
parameter values of the(p, q, j) scheme.

As the SAFIR network was not dedicated to this experiment only, some perturbation ¢
to other traffic may have occurred. The measures for each scheme were taken consid
30 samples of 100 time steps each. Table Ill summarizes the minimum, maximum,
average values of the total 100 time steps for each code.

We must notice that the ATM fore interface requires some CPU resources, to pack an
unpack the communication cells to be submitted. These are totally hidden from the us
The new generations of ATM hardware will probably fix this problem in the near futur
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For the time being, we restrict ourselves to using only three processors out of four for
run on a Dec 4100 server. For the sake of simplicity in our first set of experiments, we h;
used the same number of processors on each parallel computer.

Table IIl shows that:

e The best overlapping of intercode communication through the SAFIR network h
been reached with th€(6, 6, 2) scheme with a ratiB, =91.79%. Obviously smaller
delay p or higher order extrapolationdegrades the performance.

¢ In all cases the FDDI network, whose peak performance is still eight times slow
than the peak performance of the memory channel, is a good enough network for
metacomputing experiments, sinBgy is in all cases larger than 96.1%.

o Nevertheless the two codes are strongly unbalanced in terms of computing cost
therefore itis nota good solution to take the same number of processors and domains per
code. However, we observe that in all cases the efficiency obtained with our scheme is
close to the optimal efficiency: with no delay in communication, i.e., noncoupling elap
time, this maximum efficiency fo€(6, 6, 2) is at mosE, = $x325613x1029) _ g5 820,
The results obtained for the FDDI and the SAFIR networks are close to this value.

e A straightforward coupling code procedure which exchanges a field of data betwe
parallel computers at each iteration step will give much worse results:

Considering the global data grid size of (24028x 64) bits, we can estimate (see
Fig. 12) the time needed to transfer one field from one code to the other at 1 s at le
Table Il gives approximately 1 s per time step for the Navier—Stokes code and 0.33 s
the combustion code. As Fig. 14 shows, it takes nearly 3.3 s to perform two time steps v
SAFIR. The ratioR;,, then is 60.60% at most; Table Ill shows that ¢, 6, 2) scheme
improves the performance of the parallel computation Wt up to 92%.

6.5. Parallelism Results on Metacomputing wifC(p/2p, q, j) Schemes
and Load Balancing of Codes

In previous results the codes are greatly unbalanced, which leads to an overall medi
efficiency of the metacomputing. We consider nowdh€ (6/12, 6, 2) schemes and we try
to achieve better load balancing between the computing cost of the two uncoupled co
In all runsk is such that the delay for the first 30 modegis- 6, and the delay for high
frequencies ip = 12. Different data distributions for the combustion code and the Naviel
Stokes code are used. We set the number of combustion processes running in Lyon to
3 and we take between 2 and 9 processors for the Navier—Stokes code in Paris. Diffe
grid sizes 2x N; x 2 x Ny are testedN, is for the number of modes in the direction of the

3.33s

¢ +
NS time

|
@ Time step end ~ CBume
- Time step start —> Communication

FIG. 14. Schedule for two iterations of the two codes (NS, Navier—Stokes; CB, combustion) with explic
coupling and no delay for communications.
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front propagation. The number of time steps is set to 200 except for the largest prob
(Nx =180, N, =240) where it is set to 80 for convenience.

For each grid size, Table IV summarizes the best elapsed time obtained for the sch
using the SAFIR network, between the different data distribution configurations tested.
found that:

e A load balancing of at least 50% between the two codes (73.82%,fer 180) has
been achieved.

e The efficiency of the coupling with FDDI is between 78 and 94% while the couplin
with SAFIR goes from 64 to 80%.

e The performance of our scheme can deteriorate when the size of the grids is incree
This degradation is weaker with the FDDI network than with the SAFIR network.

e We notice that the elapsed time for noncoupling codes is eventually slightly larger tf
the elapsed time for the coupling case in the table: the sensitivity of the performance of
code with respect to memory load seems to allow such surprising results.

7. CONCLUSIONS AND PERSPECTIVES

In this paper, we studied new schemes for the metacomputing of two coupled moc
running on distant parallel computers connected with a low bandwidth network. The
schemes are based on the explicit treatment of the coupling terms in the model. Extr:
lation formulae are used to relax the number of intercode communications. The scher
parameters have to be set adaptively in order to satisfy the accuracy and stability constre

First, we studied the stability and the accuracy of the schemes to solve linear and r
linear systems of PDEs with and without oscillation relaxations.

e Our linear stability analysis for ODE systems shows the limit of the scheme due
the explicit treatment of the coupling terms. The stronger the coupling, the smaller
maximum time step allowed.

e A generalization to a system of PDEs with periodic boundary conditions shows tt
one can adapt the delay in the coupling scheme with respect to the wave number in c
to further relax the penalty on communications.

e Several numerical examples confirm the stability and accuracy properties of
scheme. In particular, we checked on a nontrivial combustion model that the sche
C(p, p, 2) does not significantly affect the bifurcation parameter values for moderate vall
of the delay.

Second, we tested the parallel efficiency of the scheme with two distant parallel compu
running coupled codes with moderate data size, connected with a 10 Mbits/s ATM link. \
have shown that:

e TheC(p, g, j) scheme really makes possible the use of far away parallel comput:
for metacomputing. Sources of inefficiency are then due to mainly unbalanced load betw
the two codes.

e Theo,C(p/2p, g, j) scheme makes it possible to hide intercode communication qui
well, even if the network communication bandwidth is slow. Between 63 and 80.6C
(respectively 77.83 and 93.98%) efficiency has been reached with respectively 10 Mb
(and 100 Mbits/s) links for the test cases under consideration.
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The real advantage of metacomputing with two far away parallel computers over class
parallel computing on a single large parallel computer has not been dealt with in this pa|
But we have shown that improving the algorithm of coupling codes can make possi
the efficient parallel metacomputing of an application with a slow network. The future
metacomputing should be the resolution of so-called “grand challenge” problems wh
cannot be solved on a single parallel computer. Our next step in this research is to cons
large sets of coupled PDEs that are characteristic of combustion problems with reali
chemistry.
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